

Journal of RANDEC

巻頭言

福島の復興・再生を目指して東工大の技術力を結集

技術報告

武蔵工大炉の廃止措置における固体廃棄物と解体廃棄物の保管 JMTRの廃止措置に向けた難処理廃棄物の廃棄体化のための処理方法の開発 ー炉内構造物と使用済イオン交換樹脂一 東海村における除去土壌の埋立処分に関する実証事業について

総説

チェルノブイリ原子力発電所の溶岩状燃料含有物質(LFCM)管理に対するレーザー切断の検討 諸外国の発電炉の廃止措置戦略及び実績 第4回 英国の主要な廃炉プロジェクトの概況と特徴

RANDEC

RANDECは、原子カバックエンドの確立に向けた 技術の調査・研究及び普及・啓蒙活動等の下記の 公益目的事業を行っています。

国内の研究施設等廃棄物の集荷・保管・処理事業の確立

デコミッショニング及び放射性廃棄物処理処分に係わる調査・研究

福島県及び関東一円の環境回復に関する技術開発

原子カバックエンドに係わる研究成果の普及

これらの事業を通し、わが国の科学技術及びエネルギー事業の振興に寄与しています。

デコミッショニング技報

第62号 (2020年9月)

-目 次一

卷頭言

技術報告

JMTRの廃止措置に向けた難処理廃棄物の廃棄体化のための処理方法の開発

一炉内構造物と使用済イオン交換樹脂 9
 関 美沙紀、中野 寛子、永田
 寛、大塚
 薫、大森 崇純
 武内 伴照、井手 広史、土谷 邦彦

 東海村における除去土壌の埋立処分に関する実証事業について
 20

 村田<</td>
 千夏、北原
 理、田中
 究、天澤
 弘也

 武部
 慎一、山田
 修、亀尾
 裕

総 説

チェルノブイリ原子力発電所の溶岩状燃料含有物質 (LFCM) 管理に対するレーザー切断の検討 … 32 アンドレアス ベツィヒ、マキシム サベリエフ、ビクトル クラスノフ アヒム マーレ、パトリック ヘルビック、セシル ジャベーユ クリストフ ライアンズ、ノルベルト モリトー

諸外国の発電炉の廃止措置戦略及び実績

 第4回 英国の主要な廃炉プロジェクトの概況と特徴
 47

 宮坂 靖彦、澁谷
 進、榎戸 裕二

Journal of RANDEC

No. 62 Sep. 2020

CONTENTS

Technical Report

Storage of Solid Waste and Dismantled Waste During Decommissioning of Musashi Reactor Takafumi UCHIYAMA and Ishi MITSUHASHI	2
Development of the Treatment Method for Difficult Wastes Aimed at Decommissioning of JMTR - Structural Materials of Reactor and Used Ion-exchange Resins Misaki SEKI, Hiroko NAKANO, Hiroshi NAGATA, Kaoru OHTSUKA Takazumi OHMORI, Tomoaki TAKEUCHI, Hiroshi IDE and Kunihiko TSUCHIYA	9
Safety Demonstration Project on Disposing of Contaminated Soil in Tokai-mura	20

Chinatsu MURATA, Masaru KITAHARA, Kiwamu TANAKA, Hiroya AMAZAWA Shinichi TAKEBE, Osamu YAMADA and Yutaka KAMEO

Technical Review

Prospects of Laser Cutting for Lava- like Fuel-containing Materials (LFCM) Management	
at the Chornobyl Nuclear Power Plant	32
Andreas Wetzig, Maxim Saveliev, Viktor Krasnov	
Achim Mahrle, Patrick Herwig, Cécile Javelle	
Christoph Leyens and Norbert Molitor	
Strategy and Experiences of Decommissioning Projects of Nuclear Power Plants in Overseas	
(4) Overviews of the Representative Projects of NPP Decommissioning	
in the United Kingdom (UK) ······	47

Yasuhiko MIYASAKA, Susumu SHIBUYA and Yuji ENOKIDO

Storage of Solid Waste and Dismantled Waste During Decommissioning of Musashi Reactor

Takafumi UCHIYAMA and Ishi MITSUHASHI J. RANDEC, No. 62 (Sep. 2020), page 2~8, 2 Figures, 1 Table.

Tokyo City University Atomic Energy Research Laboratory was established in Ozenji, Asao-ku, Kawasaki-City in 1960. Since the TRIGA-II type research reactor (Musashi reactor) reached the first criticality in 1963, it has achieved many research results in the treatment of brain tumors and skin cancers, the analysis of substances and trace elements in the environment by activation analysis. The reactor facility was decided to be abolished in May 2003. After that, we are proceeding with decommissioning by performing procedures based on laws, stopping the functions of various facilities and equipment, carrying out spent fuel, and dismantling and removing some facilities. Tokyo City University Atomic Energy Research Laboratory has facilities for using radioactive isotopes and nuclear fuel. They are used as educational and research facilities together with the reactor facilities. Currently, the main task of nuclear reactor facilities is storage management of radioactive solid waste. This paper introduces the concept and current status of storage of solid waste generated during operation and dismantled waste generated during decommissioning.

Development of the Treatment Method for Difficult Wastes Aimed at Decommissioning of JMTR

- Structural Materials of Reactor and Used lon-exchange Resins -

Misaki SEKI, Hiroko NAKANO, Hiroshi NAGATA Kaoru OHTSUKA, Takazumi OHMORI Tomoaki TAKEUCHI, Hiroshi IDE and Kunihiko TSUCHIYA

J. RANDEC, No. 62 (Sep. 2020), page $9\sim19$, 7 Figures, 6 Tables.

Japan Materials Testing Reactor (JMTR) has been contributing to various research and development (R&D) activities such as the fundamental research of nuclear materials/fuels, safety R&D of power reactors, and radioisotope production since the beginning of the operation in 1968. JMTR, however, was decided as one of decommission facilities in April 2017 and it is taken an inspection of a plan concerning decommissioning because the performance of JMTR does not confirm with the stipulated earthquake resistance. As aluminum and beryllium are used for the core structural materials in JMTR, it is necessary to establish treatment methods of these materials for the fabrication of stable wastes. In addition, a treatment method for the accumulated spent ion-exchange resins needs to be examined. This report describes the overview of these examination situations.

Safety Demonstration Project on Disposing of Contaminated Soil in Tokai-mura

Chinatsu MURATA, Masaru KITAHARA Kiwamu TANAKA, Hiroya AMAZAWA Shinichi TAKEBE, Osamu YAMADA and Yutaka KAMEO

J. RANDEC, No. 62 (Sep. 2020), page 20 \sim 31, 11 Figures, 3 Tables.

On the basis of Act on Special Measures, municipalities stripped surface soil off the playground of park to decontaminate the soil which had been contaminated with radionuclides released from Tokyo Electric Power's Fukushima Daiichi Nuclear Power Plant. To minimize the exposure dose of the residents, it was essential to decide safe disposal of the contaminated soil which has been stored at storage areas. Tokai-mura office, therefore, required Japan Atomic Energy Agency (JAEA) to perform demonstration project of burying the contaminated soil generated by decontamination of public facilities in order that the ministry of the environment provides decision on the enforcement ordinance and guidelines of burying it. In this project, we acquired data of air dose rate and the personal exposure dose during transporting, burying, and storing the contaminated soil. In addition, we measured radioactivity concentration of dust collected from surroundings of the landfill and seepage water through contaminated soil.

Prospects of Laser Cutting for Lava- like Fuel-containing Materials (LFCM) Management at the Chornobyl Nuclear Power Plant

Andreas Wetzig, Maxim Saveliev, Viktor Krasnov Achim Mahrle, Patrick Herwig, Cécile Javelle Christoph Leyens and Norbert Molitor J. RANDEC, No. 62 (Sep. 2020), page 32~46, 8 Figures, 3 Tables.

The Chornobyl Nuclear Power Plant (ChNPP) Unit 4 nuclear accident created an unprecedented amount of radioactive waste that is yet to be handled for final disposal. Damaged fuel assemblies and large amounts of fuel containing materials (FCM) made of molten fuel that fused with other reactor components are mixed with reactor debris, and are now covered under the shelter of the arch-shaped New Safe Confinement (NSC). Within the design life time of the NSC of up to 100 years, all structures and materials under the NSC have to be safely removed. The solidified fuel containing lava represents several hundreds of cubic meters, present in several rooms down to level 0 of the unit.

The material is hard, but its inevitable degradation and self-destruction over time is a worrying evolution causing increasing amounts of radioactive dust and aerosols inside the Object Shelter (OS). Recovering as much solid FCM as possible before it converts to dust is the only way to prevent uncontrollable amounts of aerosols in the NSC. The task is a unique challenge considering the FCM characteristics and location, and because there is no reference case for their retrieval and processing towards safe disposal. For fragmentation of such materials before their retrieval, remote-operated laser cutting has been identified as a segmentation tool of choice for highly contaminated and fuel containing materials under the NSC conditions.

In cooperation with the Institute of Safety Problems of Nuclear Power Plants (Ukraine) and Plejades in coordination with ChNPP, the Fraunhofer Institute IWS in Dresden (Germany) has initiated a R&D program on laser cutting for the lava-like FCM at ChN-PP with solid state laser, to provide a practicable, robust and safe technical solution as part of a comprehensive safe approach for the overall challenge at ChNPP Unit 4. This international project is open to international cooperation. It includes cold testing in Germany and mock ups and hot testing with real material in Ukraine. It is assumed that a dedicated tool can be developed with the next 15 years. This project has to be developed in parallel to the other dismantling and waste management technologies needed for the conversion of destroyed ChNPP Unit 4 into ecologically safe conditions.

Strategy and Experiences of Decommissioning Projects of Nuclear Power Plants in Overseas (4) Overviews of the Representative Projects of NPP Decommissioning in the United Kingdom (UK)

Yasuhiko MIYASAKA, Susumu SHIBUYA and Yuji ENOKIDO J. RANDEC, No. 62 (Sep. 2020), page 47~66, 25 Figures, 2 Tables.

In this report introducing "the decommissioning strategy and performance of power generation reactors in overseas," we will focus on the United Kingdom (UK) as the 4th article, following the first of the US, the second of Germany and the third of France. In the UK, 45 units including pilot nuclear power reactors have been constructed so far, currently operating 14 advanced gas reactors (AGRs) and 1 PWR. Two state-of-the-art European pressurized reactors manufactured by Areva of France are under construction at Hinckley Point C site. On the other hand, there are 30 power reactors closed by 2015, and the activities of decommissioning are continued systematically. The decommissioning of Gas-Cooled Reactors (GCR) is working on decommissioning measures based on the principle of long-term safe storage of the reactor itself. This report outlines the decommissioning project of GCR, Windscale Advanced Gas-cooled Reactor (WAGR), Steam-Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactors (PFR), including an overview of laws and regulations related to decommissioning. This report also describes the UK policies for nuclear energy, decommissioning and waste management.

福島の復興・再生を目指して東工大の技術力を結集

東京工業大学先導原子力研究所所長 理事副学長特別補佐(研究担当)

竹下 健二

東京電力福島第一原子力発電所の廃止措置は2011年12月に政府が決定した中長期ロードマップに従って 進められているが、事故当初より問題となっている汚染水に対して、陸側遮水壁の設置や事故炉周囲のサ ブドレインからの地下水汲みあげなどの対策が功を奏し、事故炉への地下水の流入は事故直後の400 m³/ 日から170 m³/日に大きく減少している。発生した汚染水は多核種除去装置で順調に処理されている。今 後は、燃料デブリの取り出しが主要課題となるが、事故炉からの放射性物質に起因するリスクを継続的か つ速やかに低減することを基本方針に廃炉作業が進められる。リスク低減には、①損傷施設の閉じ込め機 構の改善、②閉じ込められている放射性物質の性状や形態の安定化、③損傷施設からの放射性物質の回収 とその健全な保管が必要である。

一方、事故時に放出された放射性Csによるオフサイトの広域環境汚染も重要な問題である。事故後の 懸命な除染作業により、原発周囲の帰宅困難区域を除いて広域な環境汚染は解消されつつあり、汚染土壌 は仮置場から中間貯蔵施設に輸送されている。汚染土壌の総量は1,300万m³超と大量であるが、約96%は 8,000 Bq/kg以下に放射能が減衰するのを待って建設用材等に再利用される。汚染度の高い残りの土壌(約 75万m³) は何らかのCs回収固定化・廃棄物減容化などの処理が必要である。

こうした福島の現状を踏まえ、東工大の技術力を結集して同地域の早期復興を目指して、本年4月より 東工大の科学技術創成研究院内に「福島復興・再生研究ユニット」を立ち上げ、さらに、研究ユニット内 に廃止措置に特化した「TEPCO廃炉フロンティア技術創成協働研究拠点」を東京電力ホールディングス 株式会社と連携して発足させた。東工大教員の特色ある研究課題から廃止措置現場のニーズに適合した課 題を抽出し、以下の研究を進めている。

- (1) <u>廃止措置の推進・事故の早期収束に資する技術開発</u>原子炉建屋内の漏洩調査ロボット開発、デブリ 発生機構研究、デブリ取出し時の再臨界防止研究、水処理2次廃棄物の減容・安定固化研究を東電技 術者と二人三脚で現場ニーズに即して進めていく。
- (2) <u>汚染土壌からのCs回収及びCs固定化技術の開発</u> 高度汚染土壌や焼却飛灰からの放射性Csの回収、 安定固定化と最終廃棄物の高減容化技術を開発し、中間貯蔵後30年以内の最終処分を目指している。
- (3) <u>原発災害地域の産業復興と人材育成</u>原発事故で被害を受けた浜通りの生活環境の再建に向け大学の 知を結集し、福島イノベーション・コースト構想に基づいて地元自治体と連携して産業振興を推進す るとともに、廃止措置を進める技術者、研究者を育成する。

現在すでに「英知を結集した原子力科学技術・人材育成推進事業」などの大型研究を複数進めており、 福島復興の早期実現に向けて東工大の技術力を研究ユニットに更に結集していくつもりである。

東京都市大学原子力研究所は、1960年に川崎市麻生区王禅寺に開設された。1963年にTRIGA-II型研究用原子炉(武蔵工大炉)が初臨界を達成して以来、脳腫瘍・皮膚癌の治療、放射化分析による物質・環境中の微量元素の解析等で多くの研究成果を収めた。原子炉施設は、2003年5月に廃止を決定し、その後、法令に基づく手続きに従い、種々の施設・設備の機能停止、使用済燃料の搬出、一部施設・設備の解体撤去を行い、廃止措置を進めている。原子力研究所には放射性同位元素使用施設や核燃料使用施設を併設し、原子炉施設とも併せ、教育研究施設として活用しているが、現在の原子炉施設の施設管理上の主要な業務は放射性固体廃棄物等の保管管理である。

本稿では、廃止措置中の武蔵工大炉において、運転で発生した固体廃棄物並びに廃止措置中に発生した 解体廃棄物の保管の考え方や現状について紹介する。

Tokyo City University Atomic Energy Research Laboratory was established in Ozenji, Asao-ku, Kawasaki-City in 1960. Since the TRIGA-II type research reactor (Musashi reactor) reached the first criticality in 1963, it has achieved many research results in the treatment of brain tumors and skin cancers, the analysis of substances and trace elements in the environment by activation analysis. The reactor facility was decided to be abolished in May 2003. After that, we are proceeding with decommissioning by performing procedures based on laws, stopping the functions of various facilities and equipment, carrying out spent fuel, and dismantling and removing some facilities. Tokyo City University Atomic Energy Research Laboratory has facilities for using radioactive isotopes and nuclear fuel. They are used as educational and research facilities together with the reactor facilities. Currently, the main task of nuclear reactor facilities is storage management of radioactive solid waste. This paper introduces the concept and current status of storage of solid waste generated during operation and dismantled waste generated during decommissioning.

1. はじめに

武蔵工大炉は、濃縮ウラン水素化ジルコニウム 減速水冷固体均質型(TRIGA-II)で、最大熱 出力100 kWの原子炉である。1959年(昭和34年) 10月に設置の許可を受け、昭和38年1月に初臨界 となった。アルミニウム被覆燃料炉心で1985年(昭 和60年)3月まで運転(積算出力1,100 MWh)、 ステンレス被覆燃料炉心に変更して1989年(平成 元年)12月まで運転した(積算出力約400

*: 東京都市大学原子力研究所 (Tokyo City University Atomic Energy Research Laboratory)

MWh)。原子力技術者育成のための教育訓練の場、 放射化分析や炉物理などの研究の場、そして医療・ 生物治療研究を中心とした全国の大学共同利用研 究施設として重責を担ってきた。

その後、長期停止を経て、原子炉施設を廃止す ることとなり2004年(平成16年)1月27日に原子 炉等規制法第38条第1項に基づき文部科学省に 「解体届」を提出し、同年4月より廃止措置に着 手した。原子炉等規制法が改正されて廃止措置計 画の認可制度が新設されたことに伴い、文部科学 省に「廃止措置計画」を申請し、認可され、さら に、2度の廃止措置計画の変更認可を行った。

本稿では、廃止措置中の武蔵工大炉において、 運転で発生した固体廃棄物並びに廃止措置中に発 生した解体廃棄物の保管の考え方や現状について 紹介する。

2. 廃止措置の進捗状況

2.1 廃止措置計画の概要

廃止措置は、**Table 1**に示す通り、2003年(平 成15年)の廃止措置決定後、2004年(平成16年) に原子炉の永久停止措置として原子炉の運転機能 の停止、使用済燃料の輸送に伴う輸送容器の用意 と輸送前の準備・手続きを行い、2006年(平成18 年)に使用済燃料を米国エネルギー省(USDOE) へ輸送した。使用済燃料輸送後、2007年(平成19 年)から2012年(平成24年)にかけ、燃料貯蔵施 設の機能停止や液体廃棄物処理設備の機能停止と 解体撤去、さらに、運転で発生した固体廃棄物を 貯蔵していた固体廃棄物貯蔵庫の解体撤去等を行った。

現在は、上記、運転で発生した固体廃棄物並び に廃止措置作業等で発生した解体廃棄物は、原子 炉室内で保管管理を行っている。

年	2003	2004	2005	2006	2007~	2012~	Future
項目			Phase 1		Pha	se 2	Phase 3
施設の状況	▲廃止の	決定 ▲ 所轄官庁	への当初	及び補正言	▲ ▲ †画の提出	▲ Z	
永久停止措置		運転機	機能の停止		燃料貯蔵、液体風	돈棄物処理設備 等	の機能停止
使用済核燃料の輸送		送容器の用 輸送前の	月意)準備・諸∃	USDC F続き	DEへ輸送		
設備の解体撤去と 廃棄物の管理・処分					放射性廃棄物の 液体廃棄物の廃 庫の解体撤去 固体廃棄 全設備の角)施設内での貯蔵	幕棄物貯蔵 貯蔵 幕棄物の処分
			■ 実績		計画		

Table 1 Decommissioning basic plan and its progress

2.2 原子炉運転機能停止(永久停止措置)

2004年(平成16年)から開始した廃止措置は、 燃料及び制御棒をはじめとする炉内構造物が原子 炉タンクから取り外され、原子炉タンク水が排出 された状態から開始した。原子炉運転機能停止は、 計測制御系統施設である制御棒駆動装置を撤去、 運転制御盤を電源から離線を行い、据付状態で保 管した(なお、本運転制御盤は、PCと連携させ、 現在はシミュレータとして学生実験等で活用して いる)。また、炉心への燃料再装荷が出来ないよ う原子炉タンク上面にカバーを取付け、施錠を行 った。この作業と並行し、設備等の放射線線量率 の測定を行った。測定結果は、保管場所と合わせ 記録を確実に行い、今後の廃止措置工事計画立案 のための基礎データとするために行った。なお、 この測定で線量率の高いものは遮へいブロックを 用いて放射線遮へいを施し、原子炉室内にて保管 している。

2.3 燃料輸送

使用済燃料は、米国エネルギー省(USDOE) の「海外試験研究炉燃料引き取り政策」に基づき USDOEに引き渡すこととし、「輸送準備」→「使 用済燃料の検査及び輸送容器への収納」→「発送 前検査・積付検査」→「実輸送」というプロセス を経て、2006年(平成18年)に燃料輸送を行い引 き渡し先であるUSDOEアイダホ国立研究所へ引 き渡した。これをもって燃料輸送は完了した。

使用済燃料の輸送容器への装荷に際しては、 ORIGENコードによって算出した核種インベン トリをもとに、モンテカルロ計算コード(MCNP) より臨界解析を行い、未臨界性を確認した。さら に、燃料装荷シミュレーションも行い、その結果 をもとに燃料装荷手順を作成し、装荷時には未臨 界測定を実施した。実装荷で得られた未臨界測定 結果とシミュレーション計算結果はほぼ一致し、 輸送容器への燃料装荷は未臨界を確認、担保しつ つ行った。

2.4 使用済燃料輸送後の設備の機能停止並びに解 体撤去

(1) 使用済燃料に係る設備の機能停止と一部解体 撤去 2006年(平成18年)から行った使用済燃料の輸送完了に伴い、その後、燃料に係る全ての系統・ 設備の運転機能停止を行った。例えば、核燃料物 質の貯蔵施設である使用済燃料貯蔵容器や燃料貯 蔵プールは、機能停止後、据え付け状態で原子炉 室内にて保管した。原子炉冷却系統施設の二次冷 却設備の一部であるクーリングタワーは、非管理 区域に設置されていた設備であり解体撤去し、一 般産業廃棄物として処分した。

(2) 固体廃棄物及び液体廃棄物の廃棄施設の機能停止と解体撤去

液体廃棄物の廃棄設備はRI施設との供用設備 であり、半地下式のコンクリート貯槽と廃液を処 理するための処理装置、さらに、廃液を移送する ための配管により構成され、原子炉建屋とは独立 し、屋外の管理区域(後に、下記、解体撤去後、 当該区域は、管理区域から解除している)に設置 されていた。施設の運用開始から長い年月を経て おり、予防保全的に更新の必要性があった。しか しながら、今後、原子炉の運転が無く、原子炉施 設からの放射性液体廃棄物の発生が無い状況から 更新の必然性に乏しく、一方ではRI施設は今後 とも教育・研究に活用していく計画があることか ら、当該設備の使用をやめ、新たにRI施設とし ての排水設備を新設することとした。

これに伴い、原子炉施設からの排水系統並びに 給水系統配管の切断並びに閉止等を行い、原子炉 施設に係る放射性廃棄物の廃棄施設である液体廃 棄物の廃棄設備の機能停止を行った。その後、既 存の設備はRI施設の排水設備が新設された後、 解体撤去し、解体撤去物の一部は、放射性廃棄物 でない廃棄物(以下、NR廃棄物という)として 処分し、残り全ては、原子炉室内にて保管した。 また、同場所では、原子炉の運転で発生した固体 廃棄物(以下、運転で発生した固体廃棄物という) を保管する固体廃棄物の廃棄設備である固体廃棄 物貯蔵庫もあり、排水設備同様、解体撤去し、発 生した解体撤去物の一部は、NR廃棄物として処 分し、残り全ては原子炉室内にて保管した。なお、 固体廃棄物貯蔵庫に保管されていた運転で発生し た固体廃棄物については、原子炉室内の固体廃棄 物保管場所(補機室)に保管した。Fig. 1にその 保管状況を示す。

なお、上記、NR廃棄物の扱いについては、所 内で定める品質保証計画書の第3次文書の位置づ けとなる「NR廃棄物取扱マニュアル」を策定し 行った。そのNR廃棄物の判断基準はのとおりで ある。①施設の運転開始からの使用履歴や設置状 況等の記録から判断する(汚染している部分が明 らかであり、その分離が可能であるものも含む)。 ②①を満足した物は、放射能量が検出限界未満で あることを確認する。このNR廃棄物と非NR廃棄 物の区分けの重要な点は、放射能測定による測定 結果によりNR廃棄物と非NR廃棄物の判断基準と して適用しない点である^{1),2),3)}。

Fig. 1 Status of the reactor room, which is storage locations for solid waste generated during operation and dismantled waste

3. 廃棄物の保管管理

3.1 廃棄物の保管

2章で記載の通り、2004年(平成16年)に廃止 措置を開始してから、廃止措置に係る機能停止や 解体撤去等これまで様々な作業を行ってきた。こ れら作業に伴い、以下のように分類される廃棄物 が発生し、現在、200ℓドラム缶に収納され保管 管理を行っている。なお、保管管理している廃棄 物には、液体状の放射性廃棄物はない。

①運転で発生した固体廃棄物

②解体撤去物

③解体付随廃棄物

④据付状態の設備機器

上記、①については、一部線量が高いものがあ ることから原子炉室内・固体廃棄物保管場所(補 機室)に、②、③については、原子炉室内に、そ れぞれ保管し、原子炉の運転時に発生した廃棄物 と廃止措置に伴って発生した解体撤去物等が混在 しないようにしている。また、②の廃棄物うち、 線量が高いものについては、同原子炉室内、コン クリートブロックを用いた放射線遮へいを施した 区域(以下、Bホールという)で保管をしている。 ④については、据え付け状態のまま、管理表示を 付け保管している。廃棄物の保管の考え方をまと めると以下とおりである。

- ・発生した廃棄物等は分散せず、原子炉室に集 中
- ・運転で発生した固体廃棄物は固体廃棄物保管 場所(補機室)に、解体撤去物等は原子炉室 に、それぞれ保管場所を分け、廃棄物を混在 させない
- ・線量の高い物については、Bホールに保管

3.2 廃棄物の管理

運転で発生した固体廃棄物と解体撤去物等の管 理は、保安規定に基づき管理が行われる。運転で 発生した固体廃棄物及び解体撤去物等は、月1回 の頻度でドラム缶表面の外観検査等の点検を行っ ている。また、解体撤去物等のうち、線量が高く Bホールに保管しているものについては、年2回 の頻度で保管物の状態や員数等の点検を行ってい る。原子炉室に保管している解体撤去物等につい ては、定常の点検に加え、自主点検時(1年に1 回)にドラム缶5本を選定し、ドラム缶表面の外 観点検等を、更に詳しく点検を行っている。なお、 これら保管管理している廃棄物は、放射性廃棄物 の外部処分場への受入れが可能になる時点まで、 原子炉室内において適切に保管管理を行う。

4. 年次報告の対象となる放射性固体廃棄物の 見直しと廃棄物の管理強化のための保安規 定変更要請

上記、3章の通り、当施設では、原子炉室内で 廃棄物の保管を行っており、当該保管廃棄物は「原 子炉の運転で発生した廃棄物」と「廃止措置に伴 い発生した解体撤去物等」と、区別して管理を行 っていた。

2018年(平成29年)3月に原子力規制庁での「放射性固体廃棄物保管量の年次報告に関する面談」

において、次のような要請があった。

- ・年次報告・放射線管理等報告書にある放射性 固体廃棄物保管量については、廃止措置に伴 って発生した固体廃棄物の保管数量も含める 報告とする。
- ・廃止措置計画で認可されている保管または仮 置場所毎の保管容量を定め、その場所毎の保 管数量を記録すること及び巡視に関すること を保安規定に定める。

上記より、当施設では、要請以前は、「運転で 発生した廃棄物」の保管量のみを報告していたが、 本要請を受け、「廃止措置に伴って発生した固体 廃棄物」の保管量も加え、放射性固体廃棄物保管 量として放射線管理等報告書にて報告することと なった。また、規制庁の要請に従い、Fig. 2に示 す通り、放射性固体廃棄物の保管又は仮置場所毎 の保管容量と保管数量及び点検頻度、それに係る 記録等について新たに保安規定に定め、変更認可 申請を行った。

保管場所		廃棄物種別	現保管量 ^{*)} (本)	保管容量 ^{*)} (本)	点検頻度
原	固体廃棄物保管場所	放射性固体廃棄物	12	80	月1回
子	Bホール	解体撤去物	**)	5	年2回
室	原子炉室内	解体撤去物及び解体付随廃棄物	107	300	月1回

*:200 ルトラム缶相当

**:コンクリート連へい体で進へいされたエリアに保管され、ドラム缶に収納されていない。

Fig. 2 Current storage amount and its capacity in the reactor room

- 5. 法令改正に伴う、今後の廃止措置中の原子 炉施設の維持管理について
- 5.1 法令改正の概要

2016年(平成28年)にIRRS報告書において、「運転段階の安全を確保する検査制度や放射性同位元素に係る規制の見直し・強化により、更に安全水準を高めていくことが喫緊の課題」とされ、「原子力発電所の廃炉が本格化していくなか、廃止措置が適切に進められる規制制度の整備も必要」とのことから、法令の改正がなされた。その改正内容の要点は、以下の通りである。

【原子炉等に係る規制】

- ・廃止措置実施方針の作成・公開制度の導入
- ・試験研究用等原子炉の廃止措置実施方針の作
 成及び公開
- ・検査制度の見直し(新検査制度)の導入
- ・原子力施設の保安のための業務に係る品質管 理に必要な体制の整備
- ・使用前事業者検査
- ・定期事業者検査
- ·原子力規制検査

上記のうち、廃止措置実施方針の作成及び公開 並びに新検査制度の導入に伴う定期事業者検査に ついて以下に記載する。

5.2 廃止措置実施方針の対応

原子力及び放射線関連施設の廃止措置を運転期 間中でも考慮することが規制要求に加えられ、廃 止措置を講ずる前の早期段階から、廃止措置を実 施する方針(以下、廃止措置実施方針という)の 作成及び公表(WEBにて一般公開)することが 義務付けられた。施行は2018年(平成30年)10月 1日からである(なお、当施設は既に廃止措置計 画が認可されている施設であるため、施行日から 更に3か月の施行期間が設けられた)。

廃止措置実施方針は、既にある廃止措置計画の 内容に加え、「廃止措置に要する費用の見積もり 及びその資金の調達の方法」、「廃止措置の実施体 制」、「廃止措置に係る品質保証計画」及び「廃止 措置の工程」の項目を追加し策定した。本実施方 針は、2018年(平成30年)12月1日付で研究所ホ ームページより一般公開した。

- 5.3 施設の維持と定期事業者検査
- (1) 原子炉施設の維持

原子炉等規制法(試験研究用等原子炉施設の維持)第28条の2に試験研究用等原子炉設置者は、 試験研究用等原子炉施設を原子力規制委員会規則 で定める技術上の基準に適合するように維持する こととなった。廃止措置の認可を受けた試験研究 用等原子炉施設においても、試験炉規則第3条の 7に則り、廃止措置対象施設に性能維持施設が存 在する場合は、法第28条の2の規定が適用され、 当施設においても廃止措置計画に性能維持施設が 定められていることから、施設の性能維持管理に 努めることとなり、以下の定期事業者検査におい て、点検・検査等が行われることとなった。

(2) 定期事業者検査

原子炉等規制法第29条により、試験研究用等原 子炉設置者は、原子力規制委員会規則で定めると ころにより、定期に、試験研究用等原子炉施設に ついて検査を行い、その結果を記録し、これを保 存することとあり、廃止措置の認可を受けた原子 炉施設においても、性能維持施設が存在する場合 は、原子炉施設の技術上の基準に適合することを 確認するため、本年度より定期事業者検査を実施 している。なお、この定期事業者検査を実施する にあたり、定期事業者検査の報告(開始時報告) を作成し、国へ報告した。

6. おわりに

以上、廃止措置中の武蔵工大炉において、運転 で発生した固体廃棄物並びに廃止措置中に発生し た解体廃棄物の保管の考え方や現状について紹介 した。武蔵工大炉は1960年(昭和35年)の設立か ら、1989年(平成元年)の原子炉停止まで、運転 時間21,177時間、積算出力1,483,223 kWhの原 子炉の運転を行った。その後、2004年(平成16年) より廃止措置に着手し、第1段階として原子炉の 永久停止措置及び使用済燃料の輸送を終えた。 2012年(平成24年)の液体廃棄物の廃棄設備の解 体撤去工事以降、大きな工事は行っておらず、現 在は第2段階として、法令遵守の下、施設・設備 の性能維持のための施設管理や廃棄物管理を主な 業務として行ってきている。そんな中、法令改正 に伴い、新たな検査制度の下、許認可申請対応や 定期事業者検査の準備対応など現在もなお、その 渦中にある。

一方、第3段階に予定している放射性廃棄物の 外部処分場への搬出を将来に見据え、放射化量イ ンベントリ評価やクリアランス検認にかかる廃止 措置関連技術等を廃止措置中の原子炉を題材にし て検討を行い、研究用原子炉の廃止措置モデルが 確立できる研究を行いたいと考えている。

参考文献

(1) 三橋 偉司,内山 孝文,松本 哲男,丹沢 富雄, "武蔵工大炉の廃止措置における廃棄物 処理場の管理区域解除,"デコミッショニング 技報, No. 50, pp. 3-11, 2014年9月.

- (2) 三橋 偉司,内山 孝文,松本 哲男,丹沢 富雄,"「武蔵工大炉」の廃止措置経験 -計画 策定から解体,サイト開放まで-,"第29回原 子力施設デコミッショニング技術講座,公益財 団法人 原子力バックエンド推進センター, pp. 109-134,平成28年10月27日.
- (3)内山 孝文, "研究炉の廃止措置と廃棄物マネジメント (武蔵工大炉の経験),"日本原子力学会 バックエンド部会 部会誌, Vol. 24, No. 2,「原子力バックエンド研究 講演再録」, 2016年度.

JMTRの廃止措置に向けた難処理廃棄物の廃棄体化のための処理方法の開発 ー炉内構造物と使用済イオン交換樹脂ー 美沙紀*、中野 寛子*、永田 関 寬*、大塚 薫*、大森 崇純 伴照*、井手 広史*、土谷 武内 邦彦* **Development of the Treatment Method for Difficult Wastes Aimed** at Decommissioning of JMTR – Structural Materials of Reactor and Used Ion-exchange Resins – Misaki SEKI^{*}, Hiroko NAKANO^{*}, Hiroshi NAGATA^{*}, Kaoru Ohtsuka^{*} Takazumi OHMORI*, Tomoaki TAKEUCHI*, Hiroshi IDE* and Kunihiko TSUCHIYA*

材料試験炉(JMTR)は、1968年に初臨界を達成して以来、発電用軽水炉を中心に、新型転換炉、高速 炉、高温ガス炉、核融合炉等の燃料・材料の照射試験に広く利用されてきた。しかし、法令で定める耐震 基準に適合していないため2017年4月に施設の廃止が決定され、現在廃止措置計画の審査を受けている。 JMTRでは発電炉とは異なった炉心構造材であるアルミニウムやベリリウムが使用されているため、これ らの処理方法を確立し、安定な廃棄体を作製する必要がある。また、蓄積された使用済イオン交換樹脂の 処理方法についても検討する必要がある。本報告では、これらの検討状況について紹介する。

Japan Materials Testing Reactor (JMTR) has been contributing to various research and development (R&D) activities such as the fundamental research of nuclear materials/fuels, safety R&D of power reactors, and radioisotope production since the beginning of the operation in 1968. JMTR, however, was decided as one of decommission facilities in April 2017 and it is taken an inspection of a plan concerning decommissioning because the performance of JMTR does not confirm with the stipulated earthquake resistance. As aluminum and beryllium are used for the core structural materials in JMTR, it is necessary to establish treatment methods of these materials for the fabrication of stable wastes. In addition, a treatment method for the accumulated spent ion-exchange resins needs to be examined. This report describes the overview of these examination situations.

1. はじめに

材料試験炉(JMTR)は、2006年8月1日に JMTR第165サイクルをもって一旦運転終了した 後、再稼働を目指し、2007年度より4年間改修を 行ってきた¹⁾。しかし、2011年3月11日の東日本 大震災による東京電力ホールディングス株式会社 福島第一原子力発電所の事故以降、2013年に「試 験研究の用に供する原子炉等の位置、構造及び設 備の基準に関する規則」(以下、新規制基準という)

*: 国立研究開発法人 日本原子力研究開発機構 高速炉・新型炉研究開発部門 大洗研究所 材料試験炉部 (Department of JMTR, Waste Management and Decommissioning Technology Development Center, Oarai Research and Development Institute, Sector of Fast Reactor and Advanced Reactor Research and Development, Japan Atomic Energy Agency) が施行され、試験研究炉に対しても適合性確認を 受けた後でなければ、運転できないこととなった。 このため、2015年3月に新規制基準の適合性確認 のための申請を提出したものの、新規制基準を満 足するためには大掛かりな耐震補強が必要となっ たことから、2017年4月1日に公表した「施設中 長期計画²¹」において、JMTR施設の廃止が正式 に決定した。それに伴い、2019年9月18日原子力 規制委員会に廃止措置計画認可申請書を提出し、 現在、審査を受けている。

JMTRの廃止措置を進めるにあたり、他の原子 力施設の廃止措置と同様に主な検討項目として、 ①廃止措置のエンジニアリング技術、②安全評価 技術、③除染技術、④解体技術、⑤廃棄物処理技 術及び⑥放射線測定技術³⁾が必要となる。この中 で、①~④及び⑥については、先行している発電 炉等の廃止措置技術の活用が可能と考えられる。 一方、⑤において、JMTRは中性子を効率よく利 用するために発電炉とは異なる炉心構造材料が使 用されていたり、一次冷却水の精製系統等で使用 されたイオン交換樹脂も施設内で保管されていた りといった特徴を踏まえた技術開発が必要にな る。 本報告では、JMTRの廃止措置計画の審査と並 行して、発電炉とは異なる試験研究炉における特 有の課題点等を抽出し、廃棄体作製に困難な JMTR炉内構造物等の処理方法の検討状況につい て紹介する。

2. 施設概要と廃棄体作製の課題点

2.1 JMTR施設の概要

JMTR施設の鳥瞰図及び炉心配置図をそれぞれ Fig. 1及びFig. 2に示す。JMTRは軽水減速軽水冷 却タンク型であり熱出力は50 MWである。燃料 要素は、U₃Si₂-Al分散型合金であり、U-235の濃 縮度は約20%である。制御棒は5本あり、制御材 としてハフニウムを用いている。熱中性子束及び 高速中性子束は、いずれも最大4×10¹⁸/m²・sで あり、一次冷却水の流量は約6,000 m³/h、圧力は 約1.5 MPa (炉心入口)である。炉心は円柱形で あり、燃料要素、制御棒、ベリリウム枠の他、燃 料を取り囲むようにベリリウム反射体やアルミニ ウム反射体が配置されている。ベリリウム反射体 やアルミニウム反射体は中性子が均等に照射され るよう定期的に方向または装荷位置を変更しなが

Fig. 1 Bird's-eye view of JMTR facility

Fig. 2 Photo of the core and diagrammatical view of JMTR core

ら使用されていた。一方、炉心内の反射体を固定 するためのベリリウム枠は炉心内の格子位置に設 置されている。このベリリウム枠は、東枠、西枠 及び北枠からなり、それぞれ垂直方向に7段に積 まれて使用されている。

JMTRは、1968年に初臨界を達成して以来、発 電用軽水炉を中心に、原子炉材料に係る基礎研究 や人材育成、医療・工業用のラジオアイソトープ (RI)の製造等に活用される等、我が国の原子力 に係る研究開発、利用の発展に貢献してきた⁴⁾。 このため、これらの開発にあたっては、様々な材 料の照射試験が行われ、一般的な材料については、 運転(操業)廃棄物として保管されているものの、 一部の材料については廃棄物管理施設に引渡され ることなく、JMTRの施設内に保管されている。 これら炉心構造物や照射装置等で使用された材料 のうち、大量に放射性廃棄物として存在している アルミニウム及びベリリウム、一次冷却水の精製 系統等で使用されていた使用済イオン交換樹脂の 処理方法について、課題点を次項に抽出した。

2.2 廃棄体の基準

発電炉の廃止措置に伴い発生する廃棄物量のう ち、放射性廃棄物は約2%、クリアランスは約5 %、放射性廃棄物でない廃棄物は約93%である⁵⁾。 放射性廃棄物は性状ごとに分別され、それぞれの 特性に合わせて処理され廃棄体とする。低レベル 放射性廃棄物の大部分は金属類で、ステンレス (SUS)系廃棄物は処分に向けセメント系充填材 によって固化される。アルミニウムは水素ガスが 発生する恐れがありセメントで直接固化できない が、その物量の少なさから積極的な技術開発は行 われていない。ベリリウムは、発電炉で用いられ ることはほぼなく、試験研究炉独自の課題となっ ている。このように、SUS系廃棄物とは異なり 廃棄体化が困難である廃棄物を難廃棄物という。

原子炉等規制法第51条の6及びRI法第19条の 2第2項において、廃棄体が技術基準に適合する ことについて、原子力規制委員会の確認を受けな ければならないと定められている。この技術基準 のうち、水素ガス発生の観点から「廃棄体の健全 性を損なう物質」として、アルミニウムのみでで きているものや原料や大半がアルミニウムででき ているもので、大きさが手のひらサイズ (15 cm) 程度以上のものについては除去することになって いる^{6),7)}。ベリリウムは放射化によりHe-4や H-3がガスとして含まれるため、アルミニウム と同様に「廃棄体の健全性を損なう物質」の可能 性がある。また、ベリリウムは生活環境に影響を 及ぼすおそれのある有害な化学物質であり、特定 化学物質にも指定されている。イオン交換樹脂は 減容化が課題であり、それに伴う無機安定化も視

Fig. 3 Basic stance of wastes treatment in JMTR

野に入れて検討されている。

JMTR施設での固体廃棄物の処理・処分の概念 をFig. 3に示す。廃止措置で発生したコンクリー トや金属類の各種廃棄物は、汚染状況の把握、放 射能濃度の評価を行った後、分別管理する。その 後、JMTR施設から直接埋設施設に輸送すること が検討されている。前述のような廃棄体の作製が 困難な材料については、施設内で安定化等の処理 を施した後、廃棄体を作製することになる。加え て、固体廃棄物の処理・処分の検討にあたっては、 「⑥放射線測定技術」の確立も重要であり、分析 室の整備や廃棄物の種類及び核種別の測定方法の 検討も開始している。

2.3 JMTR施設にある難廃棄物の特徴

(1) アルミニウムの特徴

アルミニウムは中性子吸収(中性子吸収断面積: 約0.125バーン)が小さく、物理的及び化学的性 質も良好で、なおかつ経済的にも安価であるため、 原子炉材料として広く用いられている⁸⁾。アルミ ニウム及びその合金は比較的照射損傷を受け難 く、特に中性子照射下での耐食性に優れ、溶接を 含めて加工性が良い。

放射化したアルミニウム廃棄物は、他の放射性 雑固体廃棄物と同様に切断し、セメント系充填材 を用いて固化させると、水素ガスが発生し、廃棄 体の健全性を損なう可能性があるという問題があ る。この反応は充填剤の固化後も続くため、保管 施設や処分施設の安全な維持管理に影響を及ぼす ことが考えられる。SUS系廃棄物と混合溶融し Fe-Al合金とする方法⁹⁾ や火花放電により水酸化 アルミニウムへ変換し、これを焼成することで化 学的に安定な酸化アルミニウムとする技術¹⁰⁾ が 検討されているが、設備管理の難しさや処理コス トがかかることから実現に至っていない。

JMTRでは中性子反射体要素等の炉心構成材料 として約3.6トンのアルミニウムが使用されている。 (2) ベリリウムの特徴

ベリリウムは、中性子吸収(中性子吸収断面積: 約0.009 バーン)が小さく、かつ中性子の散乱特 性が良好であるため、試験研究炉の中性子反射材 として、中性子密度を高めるために利用された。

中性子反射材としてベリリウムを使用した場 合、熱中性子束を大きくすることができるが、核 反応により、He-4やH-3がベリリウム中に蓄積 する。このため、ベリリウム反射体は中性子が均 等に照射されるよう定期的に方向または装荷位置 を変更しながら使用していた。また、ベリリウム 枠は、その燃料領域側と反射体領域側及び垂直方 向の高速中性子の照射量に差が生じるため、内部 に蓄積するヘリウムによるスエリングが不均一と なり変形(燃料領域側に湾曲)が進み、やがてべ リリウム枠照射孔内に装荷されたキャプセルの冷 却条件の悪化と各炉心要素のハンドリングに支障 をきたす。これらの悪影響を未然に防ぐため、ベ リリウム枠の変形(曲がり)量を定期的に測定し、 交換をしていた¹¹⁾。ベリリウム枠の使用履歴と交 換実績をTable 1に示す。現在、交換した約3ト ンのベリリウム枠が、JMTRカナル内で水中保管 されている。

さらに、ベリリウムは特定化学物質に指定され ていることから、交換した使用済ベリリウムは処 理や処分が難しく、JMTRでは原子炉施設内で保 管している状況である。例えば、米国では使用済 ベリリウムを砂漠に埋蔵処分した実績があるが、 そのベリリウムから長半減期であるC-14が地下 水に混入するという環境問題が生じ、米国内で大 きな問題になったこともあった¹²⁾。米国では試験 研究炉へのベリリウム管理・廃棄物処理に係る調 査結果がまとめられている¹³⁾が、使用済ベリリ ウムの廃棄物の処分方法は決定していないのが現 状である。日本においても、JMTRの廃止措置を 進めるにあたり、JMTRカナルに保管されている 使用済ベリリウム枠、ベリリウム反射体の処理・ 処分の方法を検討する必要がある。

(3) イオン交換樹脂の特徴

イオン交換樹脂は、スチレンとジビニルベンゼ ンの共重合体に官能基を付与したものであり、そ の極性により陰イオン樹脂と陽イオン樹脂に分類 されている。JMTR施設においては、これらのイ オン交換樹脂を適切な比率で混合し、原子炉一次 冷却水及びプール・カナル水を精製していた。イ オン交換樹脂は化学的に安定であり、放射性物質 のうち、イオン状のものが除去されるが、これら のイオンを吸着した使用済イオン交換樹脂は、放 射能レベルが比較的高いことから施設内の貯蔵タ ンクに未処理のまま保管されているのが現状であ る。使用済となったイオン交換樹脂はJMTR施設 の第3排水貯槽(以下、廃液貯槽という)に貯蔵 されており、その貯蔵量はJMTRの運転に伴い増 加した。このため、使用済イオン交換樹脂の貯蔵 においては、廃液貯槽の貯蔵能力を超える前に廃 液貯槽を増設することにより対応してきた¹⁴⁾。

現在、廃液貯槽は(I)及び(II)の2つあり、 貯留槽タンク容量は約200 m³である。現在、使用 済イオン交換樹脂は、廃液貯槽(I)に約170 m³、 廃液貯槽(II)に約130 m³が貯蔵されている。特に、 廃液貯槽(I)は、1968年から使用済イオン交換 樹脂の受入れを開始しており、貯槽内に水はなく、 乾燥していることから、使用済イオン交換樹脂の 表面は粉化している状態である。JMTRの廃止措 置にともない、これらの使用済イオン交換樹脂を 適切に処理し、廃液貯槽の管理区域を解除する必 要がある。

	使用サイクル	積算出力量 (MWd)	照射量 (×10 ²⁶ m ⁻²)	曲がり量 (mm)
初代	$1 \sim 33$	約24,000	0.96	0.71
第2世代	$34 \sim 63$	約28,000	1. 12	0.84
第3世代	$64 \sim 87$	約25,000	1.00	0.75
第4世代	$88 \sim 119$	約36,000	1. 44	1. 24
第5世代	$120 \sim 146$	約29,000	1. 15	1.09
第6世代	$147 \sim 165$	約25,000	1.00	0.93

Table 1 Use history of beryllium frames

3. 難廃棄物の処理方法の検討状況

(1)アルミニウムの処理方法

前項のアルミニウムの特徴を踏まえ、アルミニ ウムの処理方法の検討にあたっては、化学的に安 定なアルミナへと変換することとし、この処理方 法について検討している。主な検討条件として、 ①設備管理が容易であること、②処理コストが安 価であること、③常温常圧環境化での作業が可能 なこと、に着目し、産業界で一般的に使用されて いるバイヤー法を選定した。バイヤー法¹⁵⁾は、 ボーキサイトを水酸化ナトリウム(NaOH)にて 溶解し、水酸化アルミニウム(Al(OH)₃)に変換 させた後、アルミニウムを選択的に得る方法であ る。NaOHで溶解するため、シリカ、金属等は溶 解しにくいので、不純物の分離も可能である。

2015年2月に日本原子力研究開発機構が所有す る原子力施設の廃止に伴って発生する解体廃棄物 のうち、この廃棄物が含まれる主要な長半減期核 種について報告¹⁶⁾され、試験研究炉で使用され ているアルミニウム合金中に含まれる長半減期の 放射性核種はNi-63、Ag-108 m、Ni-59とされて いる。このことから、バイヤー法でのアルミニウ ムの安定化処理のみならず、長半減期の放射性核 種と放射能レベルの低いアルミニウムを分離で き、解体廃棄物の低レベル化及び減容化に適して いるといえる。

検討している基本的なアルミニウムの安定化処 理フローをFig. 4に示す。

JMTR施設で多く使用されているアルミニウム は、A1050やA6061のような合金であり、日本産 業規格(JIS)から**Table 2**に示す元素が添加さ れている。

安定化処理フローを実証するため、焼成特性及 び不純物除去特性を調べた。まず、添加元素(不 純物)の多いA6061を選定し、未照射のA6061を 処理し、得られたAl(OH)₃を焼成し、X線回折装 置を用いて構造分析を行った。また、生成したア ルミナの相同定を行った。焼成後のX線回折結果 をFig. 5に示す。この結果、この安定化処理によ

Fig. 4 Basic process flow of the radioactive aluminum waste

Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	他	AI
0. 40	0.7	0. 15	0.15	0.8	0.04	0.25	0.15	0.05	残部
-0. 8	以下	-0. 40	以下	-1.2	-0.35	以下	以下	以下	

Table 2 Chemical ingredient list of aluminum (A6061) [%] ¹⁷⁾

Diffraction angle, 2θ / deg.

Fig. 5 X-ray diffraction figure of alumina

Table 3 Radioactivity and the ratio included in aluminum (A6061) after the irradiation at KUR [%]

	不純物	廃水	水酸化物
Cr-51	86. 8	0.4	0. 2
Fe-59	90. 9	0.0	0.0
Na-24	106. 7	0.4	4. 3

※N=8の平均値

り、アルミニウムをアルミナへと変換できること を明らかにした。

また、京都大学研究用原子炉(KUR)で短時 間照射(照射時間:10~20分)したA6061を用 いて、安定化処理フローの有効性を確認した。こ の結果をTable 3に示す。この結果、ほとんどの 放射性不純物核種はNaOHに不溶のため、不溶残 差として溶液から85%以上の分離が可能であるこ とも明らかにした¹⁸⁾。

以上の結果から、アルミニウムの安定化処理の 見通しが得られ、今後、本方法で得られたアルミ ナとセメント系充填剤との安定性を調査する予定 である。

(2) ベリリウムの処理方法

ベリリウムの処理方法の検討にあたっては、一 般的なベリリウムに関する法令と放射性廃棄物の 処理方法に係る基準の両方の側面から検討を行 い、安定な廃棄体の作製を行うことが必要である。 しかし、使用済ベリリウムの処理方法は、JMTR のみならず世界の試験研究炉の共通の課題として 取組んでいるが、前述の通り最終的な処理処分方 法は決定されておらず、施設内で保管されている 状況である。

文献¹³⁾の報告において、Fig. 6のようにJMTR で使用したベリリウムの放射能インベントリの評 価がされている。JMTRで発生する使用済ベリリ ウムについては、中深度処分相当の放射性廃棄物 として検討されており、ベリリウム中に内在する 主な長半減期核種はC-14、Ni-59、Ni-93の他、 Be-10となっている。2005年にドイツでのベリリ ウムの処分方法の検討について報告¹⁹⁾されたが、 最終処分のためのキャスクの検討にとどまってい る。

一方、国際科学技術センター(ISTC)の国際 協力のもと、カザフスタン国立研究所(NNC) において、使用済ベリリウムのリサイクル技術の 研究開発が行われた²⁰⁾。本研究開発では、実際に JMTRで使用されていた使用済ベリリウムを研究 用試料としてNNCに輸送して行われた。Ge検出 器で測定した使用済ベリリウム中の核種分析結果

デコミッショニング技報 第62号 (2020年9月)

Fig. 6 Radioactivity inventory of beryllium reflectors ¹⁶⁾

Fig. 7 Radioactivity of the beryllium's frame ¹⁸⁾

をFig. 7に示す。また、H-3については、熱放出 により電離箱での測定も行った。これらの測定値 については、簡易計算で算出した計算値と比較し、 その結果をTable 4に示す。この結果、検出され た主な γ 核種は、Co-60、Ag-108m及びCs-137で あった。なお、Cs-137は、ベリリウム中に不純 物として含まれるウランの核反応により生成した ものと考えられている。

リサイクル方法としては、乾式法²¹⁾ に着目し、 実証試験が行われた。この結果、**Fig. 6**で示した 使用済ベリリウム試料中の放射性不純物(Co-60、 Cs-137、Ag-108m等)の除去率は、99.9%以上と 非常に良好な結果を得た。世界の試験研究炉にあ る使用済ベリリウムは20~40トンと推定され、 リサイクル技術も放射性廃棄物低減には魅力的な 方法の1つである。

今後、放射能インベントリ及びJMTRに保管されている使用済ベリリウムの実測値との比較を行い、より精度の高い評価を行うとともに、JMTR にある使用済ベリリウムの処理方法を確立するた

項目 核種	計算値 ^{※1} (Bq/kg)	測定値 (Bq/kg)	C/E
⁵⁵ Fe	1.67×10^{6}	_	_
⁵⁹ N i	2. 16×10 ⁶	_	_
⁶⁰ Co	1. 26×10^{7}	3. 30×10^7	0.38
^{108m} Ag	^{108m} Ag 1.61 \times 10 ⁷		15. 2
¹⁰ Be	¹⁰ Be 1. 71×10 ⁷		_
¹⁴ C	¹⁴ C 3. 70×10 ³		_
³ H ^{×2}	1.30×10^{10}	1. 10×10 ¹¹	0.12

Table 4 Radioactivity of beryllium: calculation and measurement

※1:計算値は簡易計算値 ※2:トリチウムは電離箱による測定値

めの技術開発を進める。

(3) イオン交換樹脂の処理方法

JMTRで使用されていたイオン交換樹脂の仕様 をTable 5に示す。この使用済イオン交換樹脂は、 JMTR施設内に保管されているが、その一部をサ ンプリング測定した放射能濃度と平均比放射能を **Table 6**に示す²³⁾。使用済イオン交換樹脂は2つ の廃液貯槽に合計して約300 m³貯蔵されているこ とから、Co-60が5.5 MBq/ton、Cs-137が3.3 MBq /tonと推定され、低レベル放射性廃棄物の中でト レンチ処分に区分されると考えられる²³⁾。

これまで使用済イオン交換樹脂の処理方法は、 主に焼却法と酸分解法の2つの方法が開発されて きた。特に、焼却法については、高い減容比、残

渣の放射性物質の保持率、排出ガスの低減などの 観点から、様々な手法が開発されている。これら の処理方法の開発は、取扱いの容易さからセメン ト固化を基本として進められている。一方、固化 材のセメントに代わる材料として、ジオポリマー の開発も進んでいる。これらの状況を踏まえて、 JMTR施設にある使用済イオン交換樹脂の処理方 法の検討を開始している。

使用済イオン交換樹脂を処理せずに直接廃棄処 分、すなわち200ℓドラム缶で使用済イオン交換 樹脂をセメント固化材による廃棄体を作製する場 合、イオン交換樹脂の混和量は20 wt%²⁴⁾ 程度と されている。このため、使用済イオン交換樹脂 300 m³分の廃棄体の本数は約2,000本以上と推定

種類	陰イオン交換樹脂	陽イオン交換樹脂	
型番	SA10AL	SK1BL	
イオン	CI-	Na+	
体積密度(g/L-R)	665	830	
水分含有量(%)	$43 \sim 47$	$43\sim 50$	
粒度分布	1.180 µm 以上 300 µm 以下	(割合 5 %以下) (割合 1 %以下)	
直径(µm)	0.40以上		
真密度	1.07	1. 29	

Table 5 Specifications of the ion-exchange resins used in JMTR²²⁾

Table 6 Radioactivity concentration actual value of the spent ion-exchange resins and average ratio radioactivity in JMTR²²⁾

放射能濃度の実測値(Bq/g)								平均比放射能	
	H-3	C-14	Co-60	Ni-63	Sr-90	Nb-94	Cs-137	全α	(Bq/g)
JMTR	—		54.69	_	—	_	3. 28	—	1.42E-10

される。

焼却法による処理方法は、国内外での実績も多 く、採用される可能性が高いと考えられる。特に、 高周波加熱方式による焼却法が開発²⁵⁾されてお り、開発当初の減容率1/20に対し、最近では減 容率が1/50²⁶⁾程度まで高まっている。JMTRの 使用済イオン交換樹脂を焼却法で焼却灰としたも のをセメント固化した場合、固化体作製時の焼却 灰を焼却前の含水樹脂の体積に対する固化体の体 積比率として容積比32.5%²⁷⁾と仮定すると、200 ℓドラム缶中には65ℓの焼却灰を収容することが 可能である。これは使用済イオン交換樹脂約3m³ 分の焼却灰に相当することから、廃棄体の本数は 約100本に減少することができる。なお、焼却法 ではオフガス処理設備が必要であり、フィルタ等 の二次廃棄物の発生も考慮する必要がある。

酸処理法による処理方法は、使用済イオン交換 樹脂の減容と無機化を同時に達成できる化学処理 であり、約60年前に開発した技術である²⁸⁾。パイ ロットプラント(処理能力5kg/h)による実証試 験²⁹⁾も行われたが、二次廃棄物の発生、コスト の観点から課題点が挙げられている。

ジオポリマーを用いた固化処理については、ス ロバキア及びチェコの原子力発電所で発生した使 用済イオン交換樹脂等を固化した実績がある。ま た、使用済イオン交換樹脂の充填率を最大70 wt%³⁰⁾としても、環境への漏えいを抑制する性能 があることも確認されている。ジオポリマーを固 化材として使用した場合、使用済イオン交換樹脂 の前処理は必要なくなり、JMTRの使用済イオン 交換樹脂は廃棄体としての本数は約650本になり、 セメント固化した場合と比較して約1/3に減少 できることが推定される。

今後、JMTR施設内に保管されている使用済イ オン交換樹脂について、保管状態の調査を詳細に 行い、規制基準の動向や他施設での開発により、 適切な処理方法を策定していく。

4. おわりに

本報告では、JMTRの廃止措置計画の審査と並 行して、発電炉とは異なる試験研究炉における特 有の課題点等を抽出し、長期間にわたる廃止措置 を効率的に進めるため、炉心構造物や照射装置等 で使用された材料のうち、大量に放射性廃棄物と して存在しているアルミニウム及びベリリウム、 一次冷却水の精製系統等で使用されていた使用済 イオン交換樹脂の処理・処分について、課題点の 検討状況について紹介した。

JMTR施設に保管管理されている廃棄体作製が 困難な材料については、廃止措置が効率的に進捗 するように、今後とも処理方法を確立するための 技術開発を推進していく。

参考文献

- H. Kawamura, M. Niimi, M. Ishihara, et al., "Status and Future Plan of Japan Materials Testing Reactor," JAEA-Conf 2008-011, 48-52 (2008).
- 日本原子力研究開発機構,"施設中長期計画," (2017).
- 3)小室敏也,新田義一,赤羽崇,他,"三菱重 工の原子力施設廃止措置に対する取組み,"デ コミッショニング技報,60,28-40 (2019).
- 4) 照射試験炉センター, "JMTR照射試験・照 射後試験に関する技術レビュー," JAEA-Review 2017-016 (2017).
- 5) 電気事業連合会, "原子力発電所等の廃止措 置及び運転に伴い発生する放射性廃棄物の処分 について,"原子力規制委員会「第2回廃炉等 に伴う放射性廃棄物の規制に関する検討チーム 会合」(2015).
- 6)原子力環境整備センター、"低レベル放射性 廃棄物処分用廃棄体作製技術について(各種固 体状廃棄物)、"9-11(1998).
- 7) 北海道電力株式会社,東北電力株式会社,東 京電力ホールディングス株式会社,他,"充填 固化体の標準的な製作方法,"14-21, (2019).
- 8) 中村康治, "原子力と軽金属 (その1),"軽
 金属, 11巻, 4号, 292-300 (1961).
- 9) 日本碍子株式会社, "放射性アルミニウム廃 棄物の処理方法,"特開平8-262192 (1996).
- 10)株式会社日立製作所,日立エンジニアリング 株式会社,"放射性アルミニウム廃棄物の処理 方法及びその処理装置,"特開2003-28989

(2003).

- 11) 塙 善雄,田口剛俊,北岸 茂,他,"ベリリウム製中性子反射体の製作と管理,"平成20年度弥生研究会「研究炉等の運転・管理及び改良に関する研究会」発表要旨集,UTNL-R 0471,521-528 (2009).
- 12) DOE, "Fast Action Needed On Buried Beryllium At INEEL," The Energy Daily, Mar., 18 (2004).
- G.R. Longhurst, K. Tsuchiya, C.H. Dorn, et al., "Managing Beryllium in Nuclear Facility Applications," Nuclear Technology, 176, 430-441 (2011).
- 14) 日本原子力研究所,"大洗研究所原子炉施設 設置変更許可申請書(完本),"(2001).
- 15) Walter H. Gitzen (Ed.), "Alumina as a ceramic material," The American Ceramic Society, Columbus, 17 (1970).
- 16)日本原子力研究開発機構,"日本原子力研究 開発機構から発生する低レベル放射性廃棄物等 について,"原子力規制委員会「第2回廃炉等 に伴う放射性廃棄物の規制に関する検討チーム 会合」(2015).
- 17) "アルミニウム及びアルミニウム合金の棒及 び線," JIS H4040: 2015.
- 18) M. Seki, K. Ishikawa, H. Nagata, et. al., "Research on activation assessment of a reactor structural materials for decommissioning, KURNS Progress Report 2018," Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan, 257 (2018).
- 19) 榎戸裕二, "研究炉のベリリウムとカドミウムの処分方策," RANDECニュース, No. 66, 14-15 (2005).
- 20) K. Tsuchiya, "Status of Beryllium Study in JAEA," Proceedings of the 8th Specialist Meeting on Recycling of Irradiated Beryllium

October 28, 2013, Bariloche, Río Negro, Argentina, (JAEA-Review 2014-012), 43-55 (2014).

- 21) H. Kawamura, "Industrial Challenge for Recycle of Beryllium Irradiated by Neutron with Advanced Fukushima Hot-Lab," Proceedings of the 8 th Specialist Meeting on Recycling of Irradiated Beryllium October 28, 2013, Bariloche, Río Negro, Argentina, (JAEA-Review 2014-012), 5-11 (2014).
- 木村正,大戸勤,出雲寛互,他,"使用済イ オン交換樹脂の海外委託処理に関する検討," JAEA-Review 2008-080 (2008).
- 23) 原子力規制庁,"第二種廃棄物埋設に係る規 制制度の概要,"(2015).
- 24) 九州電力株式会社,日揮株式会社,"使用済 イオン交換樹脂のセメント固化処理方法,"特 開昭63-289500 (1988).
- 25) 藤沢盛夫,片桐源一,金子能成,"放射性廃 棄物処理・処分技術,"富士時報,76,345-352
 (2003).
- 26) 坂内仁, 菊池優輝, 今泉春樹, 福井康太, "固体廃棄物減容処理施設 (OWTF)の概要及び 減容処理,"デコミッショニング技報 第57号, 34-42 (2018).
- 27) "低放射性廃棄物の熱分解技術の開発,"三井 造船技報,第172号.
- 28) "I. Larson, Practices in the Treatment of Low- and Intermediate-level Radioactive Wastes," IAEA STI/PUB/116 (1965).
- 29) 和達嘉樹, 松鶴秀夫, 土尻 滋, "低中レベル 放射性廃棄物処理技術開発の現状,"保険物理,
 19, 375-385 (1984).
- 30) IAEA-TECDOC-1701-2013, "The Behaviors of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste Rresults of a Coordinated Research Project,"

東京電力福島第一原子力発電所の事故による環境汚染に対処するため、特措法に基づき、各自治体によ る除染が実施された。この除染により発生した除去土壌は、除染現場等で保管された状態が継続されてい たが、安全な処分方法を検討することが重要な課題となっていた。そこで日本原子力研究開発機構では、 環境省による除去土壌の埋立処分に関する施行規則やガイドラインの策定に資することを目的に、東海村 からの委託を受け、実際の除染作業により発生した除去土壌を用いて、埋立処分に関する実証事業を実施 した。本実証事業では、除去土壌の運搬、埋立作業等における個人被ばく線量を把握するとともに、環境 モニタリングとして、埋立場所周辺における空間線量率や大気中放射能濃度、除去土壌を通過した浸透水 中の放射能濃度等を測定した。

On the basis of Act on Special Measures, municipalities stripped surface soil off the playground of park to decontaminate the soil which had been contaminated with radionuclides released from Tokyo Electric Power's Fukushima Daiichi Nuclear Power Plant. To minimize the exposure dose of the residents, it was essential to decide safe disposal of the contaminated soil which has been stored at storage areas. Tokai-mura office, therefore, required Japan Atomic Energy Agency (JAEA) to perform demonstration project of burying the contaminated soil generated by decontamination of public facilities in order that the ministry of the environment provides decision on the enforcement ordinance and guidelines of burying it. In this project, we acquired data of air dose rate and the personal exposure dose during transporting, burying, and storing the contaminated soil. In addition, we measured radioactivity concentration of dust collected from surroundings of the landfill and seepage water through contaminated soil.

1. はじめに

2011年3月11日に発生した東日本大震災による 東京電力福島第一原子力発電所事故に伴い、多量 の放射性物質が原子炉から周辺に放出された。こ の放射性物質による環境汚染への対処に関し、国、 地方公共団体、関係原子力事業者等が講ずべき措 置について定め、環境汚染による人の健康又は生

^{* :} 国立研究開発法人 日本原子力研究開発機構 原子力科学研究所 バックエンド技術部 (Department of Decommissioning and Waste Management, Nuclear Science Research Institute, Japan Atomic Energy Agency)

^{** :}同機構 埋設事業センター(Low Level Radioactive Waste Disposal Center, Japan Atomic Energy Agency)

^{*}**:東海村長(Tokai-mura chief)

活環境への影響を速やかに低減することを目的 に、「平成二十三年三月十一日に発生した東北地 方太平洋沖地震に伴う原子力発電所の事故により 放出された放射性物質による環境の汚染への対処 に関する特別措置法」(以下、「特措法」という) が公布・施行された¹⁾。この特措法に基づき汚染 状況重点調査地域に指定された市町村は、追加被 ばく線量が年間1mSv以下となることを目指し、 ①汚染状況の調査及び測定結果に基づく除染実施 区域の決定、②除染実施計画の策定及び除染等の 実施、③除染等により生じた除去土壌の収集、運 搬及び保管の各作業を実施してきた²⁾。

除染等の措置に伴い発生した除去土壌は、仮置 場や除染現場において、安全を確保しながら一時 的な保管が実施されてきたが、処分方法に関して は国による方針が示されていない状況となってい た³⁾。このため、発生した除去土壌の処分方法の 考え方について検討することを目的として、2017 年9月、専門的知見を有する学識経験者等により 構成される [除去土壌の処分に関する検討チーム] が環境省に設置された。本検討チームにおいて、 福島県外での除去土壌の保管状況や土壌中の放射 性セシウムの挙動に関するレビュー等を確認した 結果、福島県外の除去土壌は、放射能濃度が比較 的低く、埋め立てた場合でも、外部被ばく線量及 び地下水等からの内部被ばく線量が科学的な知見 に基づけば極めて低いレベルになると考えられる ことが示された⁴⁾。

そこで、市町村等の除染実施者が保管している 除去土壌を集約して埋立処分を行う場合の管理方 法について検討するため、茨城県東海村及び栃木 県那須町の2か所で実証事業による確認が行われ ることとなった。2018年5月、国立研究開発法人 日本原子力研究開発機構は東海村からの委託を受 けるとともに、本実証事業に係る除去土壌等の運 搬、埋立、モニタリング等の詳細な計画を立案し、 同年8月より現地での作業を開始した。本稿では、 東海村において実施した除去土壌の埋立処分に係 る実証事業の内容について、詳しく紹介する。

実証事業の概要

2.1 実証事業に用いた除去土壌

東海村では、放射線量の低減を図り村民の不安 を解消するため、2012年3月に「東海村除染実施 計画 | を策定し、特措法の対象となる除染事業対 象区域 (豊岡なぎさの森及び真崎古墳群公園) と、 特措法の対象外であるが周辺より空間線量率の高 い公園(石神城址公園、白方公園、白方第2公園、 阿漕ヶ浦公園及び平原東部第1児童公園)におい て、枝葉の剪定、低木等の高圧洗浄、落ち葉の除去、 除草、側溝等の清掃、洗浄、汚泥の除去等を行っ た⁵⁾。これらの除染作業により発生した除去土壌 及び除染廃棄物は、フレキシブルコンテナに収納 し、遮へい用の土嚢(遮へい土嚢)で覆った状態 で各公園に仮置き保管された。各公園に保管され ていた除去土壌等の量(発生時)をTable 1に示す。 これらの保管量は、フレキシブルコンテナ1袋を 1 m³として算出している。なお、本実証事業実施 時点では経年変化に伴い、これらの容積は減少し

区分	保管場所	除去土壌	除染廃棄物 (草木類)	遮蔽土	保管量合計
####	豊岡なぎさの森	1, 985	1, 824	1, 013. 5	4, 822. 5
村伯広	真崎古墳群公園	509	367	345	1, 221
	石神城址公園	12	183	131	326
	白方公園	76	82	116. 5	274. 5
特措法外	阿漕ヶ浦公園	162	7	141. 5	310.5
	平 原 南 部 工 業 団地第3児童公園	_	45	55. 5	100. 5
	合計	2, 744	2, 508	1, 803	7, 055

Table 1 Depository and storage amount of contaminated soil and radioactive waste (単位:m³)

ている。

本実証事業では、Table 1に示す除去土壌をす べて埋立に使用し、その他の除染廃棄物及び遮へ い土嚢は、日本原子力研究開発機構原子力科学研 究所内に運搬したのち敷地内での保管を開始し た。

2.2 埋立場所の構造

本実証事業では、原子力科学研究所のグラウン ドに埋立場所を2か所(第1区及び第2区)設置 した。第1区は、特措法に基づく除染事業対象区 域である豊岡なぎさの森及び真崎古墳群公園の除 去土壌を半分ずつ、累計約700 m³埋め立てるため、 約36 m×18 mの範囲を1.5 m掘削し、埋立層厚は 1.2 mとした。第2区は、第1区に埋め立てた除 去土壌以外の全ての除去土壌約800 m³を埋め立て るため、約22 m×18 mの範囲を4.0 m掘削し、埋 立層厚は3.7 mとした。覆土厚については、除染 関係ガイドライン等を踏まえ、放射線を約98%遮 へい可能であり、十分な締固めが行える0.3 mと した。

モニタリング設備については、除去土壌を通過した浸透水の放射能濃度を把握するため、集水

ピット及び観測井戸を第1区に4か所、第2区に 2か所設置した。集水ピットは、約2.0 m×2.0 m ×0.5 mの木枠の中に一体型のPVCシートを張っ た構造とし、その中に砂利(砕石5号、6号)を 満たした。なお、充填した砂利については、事前 にCs-137等の放射性物質が検出されないことを 確認した。集水ピットは、底部まで塩ビ管(ϕ 50 mm)が差し込まれており、地表から浸透水を採 取できる構造とした。また、埋立後の除去土壌の 沈下量を把握するため、埋め立てた除去土壌の上 部に沈下板を設置した。沈下板の数は、第1区が 4か所、第2区が3か所とした。第1区及び第2 区の断面構造をFig.1に示す。

2.3 モニタリング地点

空間線量率、大気中及び浸透水の放射能濃度、 沈下板の測定地点を**Fig.2**に示す。

空間線量率(1 cm周辺線量当量(H*(10)))の 測定は、グラウンドとグラウンド外との境界に4 地点(空間1~3、8)、第1区付近に4地点(空 間9~12)及び埋立場所上部に10地点(上部1 ~10)、第2区付近に4地点(空間4~7)及び 埋立場所上部に10地点(上部11~20)の計32地点

Fig. 1 Structure of cross section of each landfill site⁶⁾

Fig. 2 Monitoring site of each landfill site

に設置して実施した。

大気中の放射能濃度測定は、埋立作業中及び埋 立後の除去土壌から受ける追加被ばく量や環境へ の影響を確認するため、第1区に4地点(大気5 ~8)、第2区に4地点(大気1~4)で大気浮 遊じんの採取を行った。

浸透水は、第1区に埋め立てた各除去土壌を通 過した浸透水の放射能濃度のデータが取得できる ように、豊岡なぎさの森の除去土壌の埋立場所に 2か所(水1、2)、真崎古墳群公園の除去土壌 の埋立場所に2か所(水3、4)設置した集水ピッ トからそれぞれ採取し、第2区については、豊岡 なぎさの森の埋立場所に1か所(水6)、その他 の公園の埋立場所に1か所(水5)設置した集水 ピットより浸透水の採取を行った。

沈下板は、第1区に4か所、第2区に3か所設 置した。

2.4 個人被ばく線量

本実証事業において、作業者は個人線量計(D-シャトル(個人用)、株式会社千代田テクノル製) を装着し、除去土壌以外から受ける放射線量を含 む個人被ばく線量(1 cm線量当量(Hp(10))に ついて、1時間毎の積算値を取得した。

2.5 除去土壌の放射能濃度

運搬時に測定したフレキシブルコンテナの表面 線量率データを参考に、第1区における豊岡なぎ さの森でフレキシブルコンテナ10袋、真崎古墳群 公園で10袋、第2区における豊岡なぎさの森で50 袋をそれぞれ選定し、ゲルマニウム半導体検出器 による放射能濃度測定の対象とした。選定したフ レキシブルコンテナは破袋する際に、除去土壌の 山を作り、その山から均等に10か所において除去 土壌を採取した。一つのフレキシブルコンテナに ついて、10か所から採取した除去土壌をよく混合 した後、約500g分取し、これを測定用試料とした。

6. 作業の詳細な実績及びモニタリング結果

3.1 作業工程

本実証事業において実施した運搬、埋立、モニ タリング等の工程をFig. 3に示す。運搬は、原子 力科学研究所に最も近い阿漕ヶ浦公園から着手 し、豊岡なぎさの森、真崎古墳群公園、石神城址 公園、白方公園、平原南部工業団地第3児童公園 の順で実施した。

グラウンド内では、埋立場所の掘削、除去土壌 の取り出し及び埋立、上部覆土の各作業を第1区 は2018年9月12日~10月23日、第2区は2019年

デコミッショニング技報 第62号 (2020年9月)

Fig. 3 Schedule of this project

1月16日~2月21日の期間にそれぞれ実施した。 モニタリングのうち、空間線量率測定はグラウ ンドに除去土壌を受け入れた8月27日より、大気 浮遊じんの採取は第1区の埋立を開始した9月18 日より、浸透水の採取は第1区の埋立終了翌日の 10月24日より開始した。

3.2 除去土壌等の運搬作業

運搬にあたっては、まず、移動式クレーンによ り、除去土壌や除染廃棄物が封入されたフレキシ ブルコンテナを一つずつ吊り上げ、経年劣化によ る破損の有無を確認した。フレキシブルコンテナ に破損が確認された場合には、運搬時における除 去土壌の飛散等を防止するため、その場で軽微な 補修を行うか、又は新しいフレキシブルコンテナ への詰替え(オーバーパック)を行った。フレキ シブルコンテナの状態確認及び詰替え作業の様子 をFig. 4に示す。

運搬にあたり支障がないことを確認したフレキ シブルコンテナは、移動式クレーンにより、輸送 車へ積込み、荷台をシートで覆った状態で運搬し た。これらの作業は、除染関係ガイドラインに準 拠して実施した。

各公園からグラウンドに運び込んだフレキシブ

Fig. 4 Refilling contaminated soil

ルコンテナは、重量測定及び表面線量率の測定を 行った。その後、発生場所の公園ごとにエリアを 区画して定置し、埋立作業の開始まで一時保管を 行った。

また、運搬終了後の各公園においては、整地等 の原状回復を行うとともに、空間線量率の測定を 行い、周囲のバックグラウンド線量率と同程度で あることを東海村職員とともに確認し、公園とし ての供用が再開された。運搬前及び原状回復後の 様子をFig. 5、Fig. 6に示す。

作業開始前 作業完了後

Fig. 5 Photos of Toyookanagisanomori Park during transportation period (Left: Before transportation, Right; After transportation)

作業開始前

作業完了後

Fig. 6 Photos of Masakikofungun Park during transportation period (Left: Before transportation, Right: After transportation)

3.3 除去土壌の埋立作業

グラウンドに一時保管していたフレキシブルコ ンテナは、第1区から以下の手順で埋立を実施し た。

- グラウンド内の一時保管場所から移動式クレーンで、埋立場所近傍まで移動
- フレキシブルコンテナにペイントされていた識別番号を記録
- ③ フレキシブルコンテナ上部をカッターナイ フにより開封
- ④ クレーンで吊り上げ、掘削した埋立場所内 部に移動
- ⑤ 開封部が下になるようにフレキシブルコン テナを上下反転させ、除去土壌を取出し
- ⑥ 適宜、ブルドーザーにより、除去土壌を敷

均し締固め

当初は、豊岡なぎさの森、真崎古墳群公園の 除去土壌をそれぞれ350 m³ずつ埋め立てる計画で あったが、除染当時と比較し、経年変化により除 去土壌の容積が減少していたこと、さらに締固め によっても容積が減少したため、最終的な真崎 古墳群公園の除去土壌の埋立容積は290 m³となっ た。各種モニタリングは、覆土厚が0.3 mの状態 で実施することを計画していたため、最上部の埋 立範囲を縮小し、除去土壌の埋立高さ1.2 mを確 保した。Fig. 7に第1区埋立場所における作業の 様子を示す。

第2区は、深さ4.0 mまで掘削を行い、豊岡な ぎさの森及び特措法対象外の除去土壌を区画して

デコミッショニング技報 第62号 (2020年9月)

掘削前

掘削後

破袋 覆土完了 Fig. 7 Burying the contaminated soil at first landfill section

掘削前

掘削後

Fig. 8 Burying the contaminated soil at second landfill section

埋め立てた。なお埋立の手順は、第1区と同様で あり、最終的な埋立容積は、豊岡なぎさの森が 671 m³、特措法対象外が116 m³となった。**Fig. 8** に第2区埋立場所における作業の様子を示す。

3.4 モニタリング

0.5

(1) 空間線量率

空間線量率の測定は、埋立場所の準備段階から 掘削開始前までの期間は、週1回の頻度で実施し た。また、埋立場所の掘削から覆土完了までの作

第1区付近空間線量率

業期間中は、1日1回の頻度で測定を行った。覆 土完了後は、埋立場所周辺に加えて、埋立場所上 部において、週1回の頻度で測定を行った。測定 は、地表からの高さ1.0 mにおいてNaIシンチレー ション式サーベイメータ(RADEYE PRD-ERJ 広範囲線量率サーベイメータ、株式会社千代田テ クノル製)を使用して実施した。このようにして 実施した空間線量率の測定結果をFig.9に示す。

第1区周辺(空間9~12)において、埋立開始 前の準備作業から覆土完了までの期間、空間線量

Fig. 9 Trend of air dose rate

率は $0.02 \sim 0.18 \ \mu \text{Sv/ho}$ 範囲であった。一方、 覆土完了後は、 $0.03 \sim 0.06 \ \mu \text{Sv/ho}$ 範囲となっ た。**Fig.** 3の工程表に示す通り、 $8 \ \beta \ 1 \ \beta \ 1 \ \beta \ 1 \ \beta$ 22日の期間は、各公園から除去土壌をグラウンド 内へ搬入しており、これらの仮置き保管されてい た除去土壌の影響を受けて空間線量率が若干上昇 したものと考えられる。特に2018年9月18日は空 間12において、 $0.18 \ \mu \text{Sv/hが測定されたが}$ 、こ の日は埋立作業開始の前日であり、空間12の測定 地点付近には、翌日の埋立開始に備えて除去土壌 が移設されていた。埋立場所からやや距離の離れ た、空間 $1 \sim 3$ 、8についても、同様に埋立前 の除去土壌の仮置き保管の状態に起因して、空間 線量率が変化している。

第2区周辺(空間4~7)については、埋立 開始前から覆土完了までの期間、空間線量率は $0.04 \sim 0.14 \ \mu \text{Sv/h}の範囲であり、覆土完了後は、$ $0.03 \sim 0.09 \ \mu \text{Sv/h}となった。また、埋立場所上$ $部(上部1~20)は、<math>0.03 \sim 0.06 \ \mu \text{Sv/h}$ の範 囲であった。

以上の測定により、埋立作業開始前の準備期間 (除去土壌の受け入れ、仮置き)は、通常時に比べ、 若干、空間線量率が高くなるものの、追加被ば く線量が1 mSv/年の目安となる0.23 µSv/hを下 回っていることが確認できた。また、覆土完了後 は、空間線量率が安定して、0.03 ~ 0.09 µSv/h で推移することが確認できた。

(2) 大気中の放射能濃度

ガラス繊維製のフィルタ(QR-100、石英繊維 フィルタ、株式会社アドバンテック製)を装着し たダストサンプラ (HV-500R、ハイボリウムエ アサンプラー、柴田科学株式会社製)を、1日8 時間稼働させ、連続で5日間(作業期間中は作業 日のみ)の大気浮遊じんを捕集した。覆土完了後 は、月1回の頻度で1日8時間、連続して5日間 の大気浮遊じんを捕集した。吸引量は800ℓ/min とし、大気浮遊じんを捕集したフィルタは、環 境中の放射性物質の付着に注意しながら、12等 分に折りたたみ、ユニパックに封入して測定試 料とした。ゲルマニウム半導体検出器 (GC-2518-7500SL-2002CSL、ミリオンテクノロジーズ・キャ ンベラ株式会社製)を用いて、測定試料のCs-134及びCs-137を測定した。なお、本測定は「放 射能測定法シリーズ7 ゲルマニウム半導体検出 器によるガンマスペクトロメトリー^{|7)} に準拠し て実施した。

Cs-134は全ての測定において検出下限値未 満であったため、第1区及び第2区周辺におけ るCs-137の大気中放射能濃度の変化をFig. 10、 Fig. 11に示す。

Fig. 10 Trend of Cs-137 concentration of dust collected from surroundings of first landfill section

Fig. 11 Trend of Cs-137 concentration of dust collected from surroundings of second landfill section

2018年9月18日~9月22日及び9月23日~9 月28日に採取した大気8の試料から、それぞれ 0.084 mBq/m³及び0.18 mBq/m³のCs-137が検出さ れた。この期間中、大気8の測定地点周辺では、 除去土壌の入ったフレキシブルコンテナの開封 や、除去土壌を取り出し後のフレキシブルコンテ ナの汚染検査等の作業が行われており、これらの 作業に起因して微量のCs-137が検出されたもの と推測される。同様に、2019年2月13日~2月 18日の期間に採取した大気4の試料からも、0.11 mBq/m³のCs-137が検出されたが、当該期間は第 2区の埋立作業を行っており、この作業に起因し てCs-137が検出されたものと推測される。

2019年1月16日~1月20日の期間においても、 大気5の試料から0.10 mBq/m³、大気8の試料か ら0.18 mBq/m³のCs-137が検出された。第1区は 2018年10月23日に覆土が完了した状態であり、ま た、第2区は埋立場所の造成工事のみを実施中で、 当該期間中に除去土壌を取り扱う作業は実施して いない。2019年1月の関東地方は、降雨量が少な く土壌は乾燥しており、風の強い日にはグラウン ド内に限らず、土埃が舞い上がる状態であった。

茨城県環境放射線監視センターでは、大気浮遊 じん中の放射能濃度や放射性核種の降下物量等が 継続的に調査されている。この調査結果によると、 東海村における2018年12月~2019年2月の期間 の大気浮遊じん中のCs-137の濃度は0.02 mBq/m³ 未満となっている。そこで、降下物量の調査結果 を確認したところ、東海村に隣接するひたちなか 市では、12月には0.35 MBq/km²であったCs-137 の降下物量が、1月には4.5 MBq/km²に増加し、 2月は0.98 MBq/km²に減少した⁸⁾。東海村にお ける観測データはないが、2019年1月はひたちな か市と同様に環境中に浮遊するCs-137の量が多 く、これがグラウンド内においても検出された可 能性が考えられる。

なお、作業期間を通して検出された最大値であ る0.18 mBq/m³を基に、埋立場所周辺に5日間滞 在した場合の被ばく線量が環境省により評価され ているが、追加被ばく線量は7.8×10⁻⁷ mSvであっ た⁶⁾。

(3) 浸透水の放射能濃度

覆土が完了した後、集水ピットに溜まった浸透 水は週1回の頻度で汲み上げ、500 m ℓ ポリ瓶に 入れて、これを測定試料とした。測定にはゲル マニウム半導体検出器を使用し、Cs-134及びCs-137の放射能濃度を測定した。なお、使用した測 定器及び方法は、大気浮遊じんの測定と同様とし た。浸透水の放射能濃度の測定結果をTable 2に 示す。

	採取日	核種	放射能濃度(Bq/ℓ)	検出下限値(Bq/ℓ)
签 1 反	2010/10/24 ~ 2020/2/20	Cs-134	検出下限値未満	0.61 \sim 0.91
	2018/10/24 ~ 2020/3/30	Cs-137	検出下限値未満	0.66 \sim 0.99
第2区	2010/2/27 - 2020/2/20	Cs-134	検出下限値未満	0.61 \sim 0.95
	$2019/2/21 \sim 2020/3/30$	Cs-137	検出下限値未満	0.70 \sim 0.99

Table 2 Radioactivity concentration of seepage water

Cs-134、Cs-137の測定値は、全ての試料において検出限界値(1.0 Bq/ℓ)以下であることを確認した。セシウムは土壌に強く固定・保持されることが知られていたが、本実証事業においても浸透水中の放射能濃度は検出下限値未満であり、飲料水中の放射性物質の基準値である10 Bq/ℓを十分に下回ることを確認した。

3.5 埋立作業者の個人被ばく線量

各作業工程における1日当たりの個人被ばく線 量の平均値及び1時間あたりの線量に換算した個 人被ばくの平均値をTable 3に示す。

Table 3 Individual dose of workers

	平均値 (μSv/日)	平均値 (μSv/h)
受入	0.68	0.11
造成	0.69	0. 11
埋立	0.75	0.11
覆土	0.67	0.10
管理期間中の モニタリング	0.14	0. 08

各作業工程における1時間あたりに換算した個 人被ばく線量の平均値は0.08 ~ 0.11 μ Sv/hの範 囲であり、作業内容による個人被ばく線量に大き な差は無いことがわかった。個人被ばく線量につ いては、環境省によりシミュレーションによる評 価も行われている。本実証事業により取得した個 人被ばく線量とシミュレーション計算結果を比較 した結果、埋立作業期間における作業者の被ばく 線量は計算により適切に予測できることが示され た⁶⁾。

3.6 除去土壌の放射能濃度

フレキシブルコンテナの表面線量率及びサンプ

リングした除去土壌の放射性セシウム濃度の測定 結果から、本実証事業で取り扱った除去土壌の放 射性セシウム濃度は平均値で1,370 Bq/kg(最小 170 Bq/kg ~最大 6,100 Bq/kg)であることを確 認した⁹⁰。

4. まとめ

東海村で保管されていた除去土壌に対して、運 搬、埋立、覆土等の作業を実施し、各工程におけ る周辺環境への影響や作業者が受ける被ばく線量 を調査した。モニタリング結果より、埋立作業期 間中の空間線量率は、埋立作業開始前の変動幅の 範囲に収まっていることが確認できた。また、大 気中の放射能濃度の測定から、吸入による追加被 ばく線量は十分に小さく抑えられていることがわ かった。浸透水の放射能濃度は全ての試料で検出 下限値以下であり、セシウムは土壌に強く固定・ 保持され、移行し難いことがこれまでの調査と一 致した。

本稿で示せなかったデータも含め、本実証事業 で取得したこれらのデータは、環境省のホーム ページにおいて公開されるとともに、除去土壌の 処分に関する検討チーム会合において報告され、 除去土壌の埋立処分に関する施行規則やガイドラ インの策定に向けて重要な役割を果たした。

謝辞

本実証事業を進めるにあたり、有益な助言頂い た環境省及び東海村の関係者の皆様に深く感謝申 し上げます。また、現場作業の安全管理に尽力し て頂いた原子力エンジニアリング株式会社の担当 者の皆様に深く感謝申し上げます。
参考文献

- 1)環境省、"廃棄物関係ガイドライン第2版," (2013).
- 2)環境省,"除染関係ガイドライン第2版," (2013).
- 3) 環境省ホームページ, "放射線による健康影 響等に関する統一的な基礎資料(平成30年度 版),"環境省.
- 4)環境省除染チーム,"除去土壌の処分に関す る検討チーム会合(第1回)参考資料3「除去 土壌の埋設に係る放射性セシウムの挙動の把 握」,"環境省,11-13,(2014).
- 5) 東海村,"東海村除染実施計画,"2,(2012).

- 6)環境省環境再生・資源循環局,"除去土壌の 処分に関する検討チーム会合(第5回)資料1 「除去土壌の埋立処分に係る実証事業の結果に ついて」,"(2019).
- 7) 文部科学省科学技術・学術政策局原子力安全課防災環境対策室,"放射能測定法シリーズ
 7 ゲルマニウム半導体検出器によるガンマスペクトロメトリー,"日本分析センター,(1992).
- 8) "平成30年度茨城県環境放射線監視センター 年報,"158-159,茨城県(2020).
- 9)環境省除染チーム,"除去土壌の処分に関す る検討チーム会合(第4回)資料1「除去土壌 の埋立処分に係る実証事業の結果について(中 間取りまとめ案)」、"環境省,15,(2019).

チェルノブイリ原子力発電所の 溶岩状燃料含有物質(LFCM)管理に対するレーザー切断の検討 ^{アンドレアス ベツィヒ*、マキシム サベリエフ**、ビクトル クラスノフ** アヒム マーレ^{*}、パトリック ヘルビック^{*}、セシル ジャベーユ^{***} クリストフ ライアンズ^{*}、ノルベルト モリトー^{***} **Prospects of Laser Cutting for Lava- like Fuel-containing Materials** (LFCM) Management at the Chornobyl Nuclear Power Plant Andreas Wetzig^{*}, Maxim Saveliev^{**}, Viktor Krasnov^{**} Achim Mahrle^{*}, Patrick Herwig^{*}, Cécile Javelle^{***}}

チェルノブイリ原子力発電所(ChNPP)4号機の原子力事故は、最終処分の処理ができないくらい前 例のない多量の放射性廃棄物を発生させた。破損した燃料集合体と原子炉機器構造物と溶け合った溶融燃 料からなる大量の燃料含有物質(FCM)は、原子炉デブリと混じり合って、アーチ型の新安全閉じ込め 構造物(NSC)の下に埋もれている。NSCの最大100年の設計寿命内で、NSCのなかにある全構造物と物 質を安全に取り除く必要がある。数百 m³の固化したFCMは、4号機のレベル0までのいくつもの部屋に 存在する。

この物質は硬いが、事故の経過とともに避けられない性質劣化と自己破壊によって、オブジェクトシェ ルター (OS) 内の放射性ダストとエアロゾルを増加させる原因となっている。NSC内のエアロゾルを制 御不能に陥らせない方策は、FCMがダストに変化する前にできるだけ回収することである。破壊した4 号機を環境上安全な状態へ移行するため、NSCの条件下で燃料を含む高濃度汚染物質の回収前の断片化 に必要な遠隔操作のレーザー切断は、他の解体及び廃棄物管理技術と並行して開発すべき最適な切断ツー ルとされる。

4号機で全体的な課題に対する包括的な安全なアプローチの一環として、実用的で確実安全な技術的解決策を提供するために、ChNPPに関係するウクライナの原子力発電所安全問題研究所及びプレジャディス(株)と協力して、ドレスデン(ドイツ)にあるフラウンホーファー研究所IWSは、ChNPPで溶岩状FCM (LFCM)を固体レーザーで切断する研究開発計画を進めている。この国際プロジェクトは自由参加の国際協力で、コールド試験はドイツ国内で、モックアップ試験と実物質を用いたホット試験はウクライナで行われる。このプロジェクトは、4号機を環境上安全な状態に移行するために、必要な他の解体技術及び廃棄物管理技術と並行して進められる。

^{* :}フラウンホーファー研究所IWS(Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden)

^{** :}原子力発電所安全問題研究所(Institute for Safety Problems of Nuclear Power Plants of National Academy of Science of Ukraine)

^{***:}プレジャディス㈱(Plejades GmbH – Independent Experts)

⁽本論文は英語で書かれた原稿を当センターで和訳し、掲載するものです)

The Chornobyl Nuclear Power Plant (ChNPP) Unit 4 nuclear accident created an unprecedented amount of radioactive waste that is yet to be handled for final disposal. Damaged fuel assemblies and large amounts of fuel containing materials (FCM) made of molten fuel that fused with other reactor components are mixed with reactor debris, and are now covered under the shelter of the arch-shaped New Safe Confinement (NSC). Within the design life time of the NSC of up to 100 years, all structures and materials under the NSC have to be safely removed. The solidified fuel containing lava represents several hundreds of cubic meters, present in several rooms down to level 0 of the unit.

The material is hard, but its inevitable degradation and self-destruction over time is a worrying evolution causing increasing amounts of radioactive dust and aerosols inside the Object Shelter (OS). Recovering as much solid FCM as possible before it converts to dust is the only way to prevent uncontrollable amounts of aerosols in the NSC. The task is a unique challenge considering the FCM characteristics and location, and because there is no reference case for their retrieval and processing towards safe disposal. For fragmentation of such materials before their retrieval, remote-operated laser cutting has been identified as a segmentation tool of choice for highly contaminated and fuel containing materials under the NSC conditions.

In cooperation with the Institute of Safety Problems of Nuclear Power Plants (Ukraine) and Plejades in coordination with ChNPP, the Fraunhofer Institute IWS in Dresden (Germany) has initiated a R&D program on laser cutting for the lava-like FCM at ChNPP with solid state laser, to provide a practicable, robust and safe technical solution as part of a comprehensive safe approach for the overall challenge at ChNPP Unit 4. This international project is open to international cooperation. It includes cold testing in Germany and mock ups and hot testing with real material in Ukraine. It is assumed that a dedicated tool can be developed with the next 15 years. This project has to be developed in parallel to the other dismantling and waste management technologies needed for the conversion of destroyed ChNPP Unit 4 into ecologically safe conditions.

1. 概要

1986年4月26日土曜日にチェルノブイリ原子力 発電所(ChNPP)で発生した原子力事故は、前 例のない深刻な原子力事故であった。この事故の 間、4号機の原子炉は完全に破壊され、爆発によ り炉心や原子炉建屋にあった燃料集合体の一部は 飛散った。残りの炉心部は溶融し、さまざまな種 類の燃料含有物質(FCM)を形成した。主なも のは、燃料と原子炉やその他の構造物と混合した 溶岩状燃料含有物質(LFCM)である。最初の対 策として「石棺」としても知られる「オブジェク トシェルター」(OS)は、環境を保全し、核物質 及び高放射能を閉じ込めるために、事故後、数か 月で4号機の上に建設された(Fig. 1)。

1997年に、4号機周辺の環境を安全に確保する ため、国際シェルター実施計画(SIP)が策定さ れた²⁾。とりわけ、新しい安全な閉じ込め構造物 (NSC) は、不安定な構造物の安全な解体と将来 の回収まで対象となる放射能の確実な安全確保の ために設置された。このNSCは2017年に完成し、 試運転に成功した後、2019年に運用するために正 式にChNPPに移管された。具体的に、NSCは以 下の目的で設置された:(i) 放射性汚染物質の放 出を防止し、破壊された原子炉ユニットと不安定 なOSを解体すること、(ii) 放射性廃棄物(RAW) とFCMを外部から閉じ込めること、(iii) FCM及 び放射性物質を取り出すこと、(iv) 最大100年の NSCの設計寿命期間中のOS解体及び廃止措置を 容易にすること、である。

解体する構造物はクレーンで撤去後、除染又は 廃棄物管理作業に適した大きさに切断する必要が ある。解体される大半の構造物は、簡単に除染で きる表面のホコリの可能性がある。将来の除染で は、HEPAフィルター付き掃除機の使用、グリッ トブラスト(鉄鋼部材の場合)及び表面粗面化(コ

Fig. 1 Cross-section of ChNPP Unit 4 reactor in 1986 after election of the Object Shelter¹⁾

ンクリートの場合)が使用される。これらの作業 のために、NSCには、換気システム、監視シス テム、各50 t荷重容量の2つのトロリーホイスト を備えた2つの遠隔操作ブリッジクレーン等の装 置が装備されている。

それらは並行して作動し、最大100 tの負荷を 処理できる。3番目のトロリーは、切断物及び汚 染除去装置を処理するための可動装置プラット フォーム (MTP)をぶら下げている。現状では、 最終的な解体プロセスの確実な方法はまだ明確に 決定されていないが、種々の技術と使用工具が概 念として提案されている。具体的には、プラズマ アーク切断トーチ、ダイヤモンド円形切断ホイー ル、ダイヤモンドワイヤー切断などの切断ツール である。ツールの最終的選択は、安全性と生産性 の両方の面で有効性と効率を保証する必要がある。

FCMは回収され、高レベル廃棄物用のコンテ ナに梱包される。シェルターの下にある他のタイ プの廃棄物とは異なり、これらは除染することが できず、臨界の恐れがあるため、FCMを容器に 保管する必要があるが、線量率は作業者による直 接切断及び取り扱いが可能な範囲を大きく超え る。したがって、FCMは遠隔で処理し、調整前 に正確な形状に切断する必要がある。

1.1 事故時に4号機に存在した核分裂性物質

チェルノブイリで使用された高出力チャネル型 原子炉(RBMK)の燃料集合体は「熱放出カセッ ト」と呼ばれ、円筒形状をしている(Fig. 2)。 このカセットは、それぞれ18本の燃料棒が2つの バンドル(「カートリッジ」)で構成されている。 燃料棒は、中央の保持棒に沿って配置され、燃料 集合体内のウランの総質量は114.7 kg、U-235の 濃縮度は1.8%である。燃料集合体の全長は 10.025 m、正味の燃料部分の長さは上部と下部燃 料合わせて6.862 mである。

事故当時、原子炉には1,659体、南側の使用済 燃料プールには129体の使用済燃料があった。原 子炉内の燃料は、11~15 MWd/kgUの初期装荷燃 料であり、新燃料はほとんどなかった³⁾。一方、 84体の新燃料集合体が原子炉建屋にあり、そのう ち48体は中央ホールの北東側のラックに設置して あった。

1.2 事故の結果として生成した燃料含有物質の 種類

事故の結果、原子炉炉心と190 tのウランに相 当する1,659体の燃用集合体は完全に破壊された: 燃料の一部は飛び出し又は蒸発し、残りは溶融し

Fig. 2 Schematic diagram of a RBMK-1000 fuel assembly ("cassette")

て原子炉容器と原子炉下部のコンクリートを浸食 し、マグマ溜まりの形で305/2室に蓄積した。そ こから、溶融物の一部は固化するまで隣接場所や より低いレベルまで流れた。この溶融物は約30% のケイ酸塩が含まれるので、ChNPPでは、溶融 過程によって生成されるすべてのタイプの物質の 名称は、コリウムではなく、燃料含有物質(FCM) としている*。

さらに、OSには、中央ホールに吊り下げられ ていた48体の新しい燃料集合体と南側SFPに あった使用済燃料の129体すべての破壊による燃 料破片も含まれている(約20 tのウラン)。

(1) 破片化した炉心と破損した燃料集合体 炉心の爆発と破壊の結果、燃料集合体の一部は

が心の爆発と破壊の結果、燃料集合体の一部は 破片化した炉心に崩落し、また、破壊した4号機 の種々の場所(3号機の屋根とエンジンルーム及び4号機の外側に隣接する工業用地)に飛散した(Fig. 3)。炉心の破片が飛散した距離は0.5~1.3 kmの範囲である。

4号機には、南北それぞれに使用済燃料プール (SFP)があり、各プールは、平面上4.2 m×10.6 m、深さ18 mである。プールの床には、0.9 m×1.3 mのふた付きの薄肉(約6 mm)ステンレス鋼の 床が並んでいた。事故当時、使用済燃料は南側 SFPのみに存在していた。事故後、南側SFPに は5つのボーリング孔が掘削された。水平ボア ホールを通して、燃料集合体の下部や燃料集合体 間の床にも細かいほこりや粉末の山が見えた。燃 料集合体の一部がケースの下部で密閉性を失い、 南側SFPの底に分散して使用済燃料が失われた

Fig. 3 Damaged fuel inside internal premises of the destroyed Unit 4 [Photos: courtesy of Alexandr Kupnyi]

*OECDの定義によれば、コリウムの定義は、「燃料物質、部分的又は完全に酸化した被覆管、非揮発性核分裂生成物や種々の構造材料の溶融 混合物。容器内コリウムの主成分は、UO₂、ZrO₂、Zr及び鋼」である。この定義によれば、ChNPP溶融物には、原子炉容器周囲のコンクリ ート構造物からの無機物の割合が多く含まれているため、厳密にこの溶融物質には適用できない。したがって、一部の定義では「FCM」と「コ リウム」を区別していないが、ChNPP燃料含有物質を説明するためにコリウムという用語は使用されていない。 (訳者注:本論文で対象とするFCMはLFCMである。) 可能性がある。

事故当時、北側SFPは空であったが、事故後、 ボアホールが開けられ、そこから黒鉛と燃料棒の 破片が取り出された。炉心破片のクラスター高さ は約1 mである。北側SFPの底には、事故の間 に中央ホールから放出された破片があった。新燃 料48体があった中央ホールの様子をFig.4に示 す。残りの36体の新しい燃料集合体は、爆発の影 響を受けずに貯蔵部屋に保管され、事故後に安全 に取り出すことができた。

(2) 溶岩状燃料含有物質

事故が活発に続く段階で、照射された燃料の大部分は、原子炉の下の305/2室の南東の場所に集中し、そこでは主にLFCMの形成が進んだ。

この物質形成のプロセスに直接関与する材料 (Table 1) には、炉心の一部であった材料と原子 炉室(reactor shaft)で爆発中に落下した材料が 含まれている。しかし、続く事故の間に投入され たホウ素(40 t)、粘土砂(1,800 t)、鉛(2,400 t) の化合物については、ほとんど原子炉に入らず溶 融プロセスに関与していない^{3)、4)}。

使用済燃料と構造材料との相互作用の結果とし て、ウラン、ジルコニウム、ケイ素、酸素に加え て、多くの元素がLFCM組成に含まれている(**Table 2**)^{5),6)}。LFCMは、ウランの量に応じて、主 に黒と茶色のLFCMとして、種々のタイプが生成 されている(**Table 2、Fig. 5**)。

黒いガラスタイプのLFCMは、1986年秋に印象 的な固化した溶岩流として初めて発見された(「象 の足」と呼ばれている)。そこから最初のサンプ ルを取得するために、高レベルのガンマ放射線場 (8,000 Rem/h) だけでなく、材料の硬度が高い ため、突撃銃AK-74が使用された。分析によると、 このLFCMは約1,500~2,600 ℃の温度で生成し た可能性がある。

ミクロレベルでは、LFCMは不均一な固溶体で、

Fig. 4 Cassettes with "fresh" fuel in the north-eastern corner of the Central Hall (left) and destruction in the south-eastern part of the Central Hall (right) [Photos: by courtesy of Alexandr Kupnyi]

Table 1	Materials in the	reactor shaft	at the beginning	of the active stage	of the accident ⁴⁾
	materials in the	reactor shart	at the beginning	or the active stage	

Material	Inventory in rooms 504/2 and 305/2 (in reactor shaft) [t]	Part of the inventory that became FCM [t]	
Nuclear Fuel (U)	120	90	
Steel	1, 300	< 20	
Serpentinite mixes	580	160	
Concrete of the reactor containment and structures	130	130	
Concrete of the building	950	480	
Sandy backfill material	300	280	
Zirconium	-	45	
Graphite	750	nearly none	

FCM clusters in the shelter	Mg	Si	Ca	Zr	U
Black FCM in room 305/2	1.5 ± 0.7	30.5 ± 3.1	4.7 ± 1.8	3.4 ± 1.5	5.1 ± 1.2
Black FCM in the southwest, nearby room 305/2	2.5 ± 0.5	30.1 ± 3.6	5.2 ± 1.6	3.2 ± 1.1	4.3 ± 1.6
Brown FCM in the southwest, nearby room 305/2	4.2 ± 1.0	29.9 ± 4.9	5.1 ± 0.8	4.9 ± 1.0	8.4 ± 0.2
Black FCM in sector 304/3	2.3 ± 0.3	30.5 ± 3.8	5.3 ± 1.5	3.0 ± 0.8	3.9 ± 0.4
Black FCM in sector 217/2	2.3 ± 0.6	31.1 ± 5.4	6.1 ± 2.6	3.3 ± 1.2	4.4 ± 0.2
Black FCM in sector 210/6 (Steam distribution valve)	3.1 ± 0.4	29.0 \pm 3.5	4.8 ± 2.0	3.6 ± 1.6	5.1 ± 3.0
Brown FCM in sector 210/7 (Steam distribution valve)	4.1 ± 1.0	29.3 ± 4.9	5.1 ± 0.8	4.6 ± 1.3	7.9 ± 1.5
Brown FCM in sector 012/15 (Bubbler pool level 2)	4.2 ± 0.4	35.5 ± 0.7	4.9 ± 1.3	3.3 ± 0.7	7.5 ± 0.8
Average composition black FCM	2.4	30. 1	5. 1	3. 2	4. 4
Average composition brown FCM	3. 7	30. 5	5.0	4. 4	7.6
Average composition FCM, all types	2. 9	30. 3	5. 1	3. 7	5.7

Table 2 Mineralogical composition of LFCM [%]

Fig. 5 LFCM masses in rooms below the reactor shaft [Photos: by courtesy of Alexandr Kupnyi]

その「溶媒」は多数の含有物を含むガラス状ケイ 酸塩マトリックスであり、その中には酸化ウラン、 ウラン-ジルコニウム-酸素相UxZryO₂、ウラン含 有ジルコン(「チェルノブイリ型」)と金属小球が 含まれている。チェルノブイリのLFCMのマト リックスは、K、Ca、Al、Mg、Zr、Fe、Uの不 純物を含むケイ酸塩ガラスである。これらの LFCMは、その密度を**Table 3**に示すように、炉 心構成物とは著しく異なっている。黒と茶色の LFCMの比熱は、鉄筋コンクリート、砂、ガラス などの材料に近い約0.8 kJ/(kg·K)で、熱伝導率は 0.7 ~ 0.9 W/(m·K)である。

事故後、FCMの性質は変化している。初期の

物質の硬さはモース硬度約7.5で、非常に硬かっ たが、他方、自然にかつ継続的に劣化し、ダスト や放射性エアロゾルを発生している^{77,88}。これら の構造変化は1988年以来観察されている⁹⁹。ヤン グ率と微小硬度の値は、時間の経過とともに大幅 に減少している^{99,109}。毎年、数トンのFCMがダ ストに変化しているとみなされ事故時の爆発に よって生成したダストに加え、FCMの自然劣化 によって、時間の経過とともに大量のダストやエ アロゾルが生成されると言われている。FCMの 劣化の最終段階は、溶岩状の物質がサブミクロン の放射性ダストに変化することが予測されてい る¹⁰⁹。このダストには、中長期寿命の核分裂生成

Room	Type of FCM	Density [g/cm³]
Central hall and adjacent premises	Core fragments	10.4
	Black ceramic	2.3—2.7
Poor $205/2 \pm reactor shaft$	Brown ceramic	2. 5—3. 0
Room 505/2 + reactor shart	Loose layer of lava	1. 2—1. 5
	Polychrome ceramic (blue lava)	2. 8
	Black ceramic (top layer)	0. 7—0. 9
Room 304/3 horizontal flow	Black ceramic (middle layer)	0.9—1.8
	Black ceramic (bottom layer and main part of the FCM)	1. 8—2. 4
Corridor of steam distribution unit	Brown ceramic	3.00 ± 0.13
(Steam discharge valves /corridor), rooms 210/	Black ceramic	2.69 ± 0.17
Bubbler pool, 1st and 2nd floors,	Brown ceramic heaps	2.14 ± 0.34
rooms 012/	Pumice	0. 14—0. 18

Table 3 Density of various formations of LFCM inside Unit 4 Shelter⁶⁾

物や放射化生成物とともに酸化ウランが含まれ る。それは主に人の健康に害を与えることを示す。 FCMの厄介な変化は、まだ固体状態である間に、 できるだけこの物質を除去する強力な動機にもな る。

1.3 ChNPPで利用可能な切断技術の概要とFCM への適用性の評価

これまでのところ、ChNPPには、廃止措置プ ロジェクトで一般的に使用される切断工具が装備 されている。現在、1号機から3号機の構造物を 解体するために、1号機の以前のタービンホール にセルが設置されている。切断には、機械又は熱 切断ツールを使用して手動で行われている¹¹⁾。

1号機から3号機を解体するための課題は、乾 式貯蔵のための使用済燃料の処理である。発電所 の運転開始以来、約22,000体の使用済燃料集合体 がISF1建屋内プールに保管されている。それら は取り出され、キャニスターの中で乾燥、処理さ れ、使用済燃料の新施設であるISF2に保管され る。現在稼働中のこの施設は、遠隔操作切断用の SFPF(使用済燃料準備施設)建屋内にホットセ ルユニットで構成されている。RBMK燃料集合体 は非常に長い(約11 m)ため、処理プロセスで は3つの部分に切断する。すなわち、2つの燃料 バンドル間の保持棒中央部の切断と上部に向かっ て延長棒ロッドを取り外すための切断である¹²⁾。

SFPFでは、低速回転ブレードを備えた丸ノコ を使用して、燃料集合体を垂直に立てて切断する。 この機械的手法は、ホットセル内に設置されたカ メラを汚染するエアロゾルを生成しないために選 択されている。機械的な代替案は、油圧式剪断機 (ギロチンなど)であったが、保持棒を挟む恐れ があった。レーザー技術も考慮されたが、カメラ やホットセルの表面でビームが反射するリスクが あり選択されなかった。

現在、NSCに格納されている4号機では、廃 棄物管理用に処理セルが利用できる。それらは、 最初のシェルターから取り出される構造物との接 点となる。残念ながら、すでに導入されている既 存の切断技術は、4号機のNSCの下でFCMを安 全に回収するのに適さない。さまざまな場所に散 らばっている破損した燃料集合体と燃料含有物質 の取り扱いは大きな課題である。

- シェルター内に残っているすべての燃料集合 体はひどく破壊しており、撤去しなければ正 常な処理ができず、従ってISF2で処理でき ない。
- ・封じ込め機能が喪失し、燃料塊は遮蔽のない オープン線源になっている。線量率が高く、 直接取り扱うことはできない。さらに、サイ トのレイアウトから見ると放射線防護(遮蔽)

とエアロゾルの抑制)となる水中操作はでき ない。

- FCMの形状と位置が常に正確に分からないし、同じ形状と寸法の塊はない。一部のFCMクラスターの厚さは、数十cmに達するのでより柔軟なシステムが必要である。
- NSCは、一種の非常に大きなホットセルと見なすこともできる。換気システムは、圧力差を使用して、放射性ダストやエアロゾルが環境に放出されないようする。さらに、NSCには遠隔システムが装備されており、ほとんどの作業は遠隔操作ができる。また、適切な個人用保護装置(PPE)に作業者が入ることができ、特定の活動は除外されない。したがって、エアロゾルとダストの発生が大幅に増加した場合は、軽減する必要があり、発生源の場所で直ちに制御して、スタッフや機器の汚染のリスクを最小限に抑え、換気システムのHEPAフィルターの目詰まりを防止する必要がある。
- 大量のFCMや破損した燃料集合体を取り扱う場合、安全を確保するために重要な処理(大きな形状のものを適切な形状とサイズに小片化する)を検討する必要がある。

上記のような諸条件を考慮すると、遠隔制御 レーザー切断プロセスは、核分裂性物質を含むも のや高度に汚染した大型部材の切断と回収を安 全、効果的、効率的に行う適切な選択肢である。 原子力発電所安全問題研究所(ウクライナ)及び プレジャディス(株)(ドイツ)と協力して、ドレス デン(ドイツ)のフラウンホーファー研究所IWS は、固体レーザーを使用して、ChNPPでFCMの 切断に関するR&D計画を開始した¹³⁾。

ChNPPにおけるOSでのFCMのレーザー切 断技術の理論的基礎

レーザー技術は、1960年に発明されて以来、今 日の製造業界には不可欠になっている。レーザー は、摩耗のない精密なツールであり、現在工業界 で利用される最高の出力密度を提供する。レー ザー技術は、表面処理、積層造形、接合、アブレー ション、切断など、さまざまな産業用途に利用されている。

金属、非金属、ほぼ全ての種類の材料をレーザー で切断できる。通常、切断カーフ内の材料は溶融 又は分解され、その後、不活性ガス又は反応性ガ スによって排出される。CO₂レーザーはこれまで 高出力レーザー応用の市場を独占してきたが、今 日では、最先端のファイバーレーザーは、長距離 にわたる単純なビーム送信などの利点があり、特 にレーザー切断の市場を獲得している。すなわち、 高い出力密度を生成する機能とエネルギー変換効 率及びシステム全体の高い堅牢性や低いメンテナ ンス作業さを併せ持っている。標準的なレーザー 出力は最大20 kWで、より高い出力レベルも利用 できる。

2.1 廃止措置におけるレーザー利用に関する文 献調査

汚染物質や放射化物質をレーザー光線で切断す ること自体は新規なものではない。1985年、統合 燃料リサイクルプログラムの一環として、オーク リッジ国立研究所(ORNL)の燃料リサイクル部 門は、高速増殖炉やその他の核燃料サイクルから の燃料のリサイクル用にレーザー技術を実用化し た。Weil¹⁴⁾は燃料棒から処理できないハードウェ アを取り除き、燃料棒束を短い長さに剪断するた めの高出力9kW連続波(cw)CO₂レーザー切断 システムを提案した。レーザーは、核燃料の解体 に使用する貴重なツールであると結論付けた。そ の後、ORNLは同じレーザーシステムを使用して 軽水炉燃料の脱被覆管技術を検討したが、その時 点では、鋸引きと研磨が最良の選択肢とされ た¹⁵⁾。

現在、レーザービームは廃止措置の分野で多種 多様な用途があり、田村らは、100 mmまでの厚 さの鋼板¹⁶⁾及び300 mmまでの厚さの鋼板¹⁷⁾の レーザー切断条件を検討した。さらに、鋼板の切 断のためのレーザー技術の開発を目的とした30 kWファイバーレーザーを使用した廃炉研究を 行った¹⁸⁾。Lopezら^{19),20)}は、厚さ70 mmまでの材 料のレーザー切断を示し、廃棄物を最小限に抑え る適切パラメーターによる切断手順最適化の指針 を作成した。HiltonとKhan²¹⁾は、直接廃止措置 用に小型化を目的とした水中レーザー切断とレー ザーくり抜き切断の組み合わせを示した。Shin ら²²⁾は、解体作業の厚鋼切断用の新しい切断ヘッ ドを開発し、6kWファイバーレーザーシステム を適用して60 mm厚さのステンレス鋼板を切断し た。

フランスでは、CEAが率いるチームが、加圧 空気で作動して汚染地域への水の分散を回避する 遠隔操作ロボットに取り付けた高出力8kW cw Nd:YAGレーザーツールの開発に成功した^{23), 24)}。 このシステムは、マルクールのUP1(フランス) の解体に適用された。また、原子力用途の厚い金 属材料を切断するパルスレーザー光源の性能も研 究された²⁵⁾。

廃止措置と解体の問題を解決するためのレー ザーの使用に加えて、最近の研究では、東電福島 第一原子力発電所の燃料デブリを処理するための レーザービームの使用も検討されている。山田 ら²⁶⁾は、燃料デブリと圧力容器内構造物を除去 するための有望な技術として、ファイバーレー ザー切断と破砕を評価した。Journeauら²⁷⁾は、 溶融燃料に類似した物質を使用し、実験室条件下 で現実的な非放射性のFCM代替物を使用した レーザー切断の包括的な試験を行った。レーザー ビーム切断試験は、8kWディスクレーザー光源 を使用して破片ブロックで行われ、150 mm/min の速度で約40 mmの切断深さを達成した。

さらに、レーザー切断中に放出されたエアロゾ ルは、フィルターとインパクターによって収集さ れ、最終的に質量濃度、粒子サイズ分布、及び組 成に関して分析された^{28), 29)}。レーザー切断技術 はFCMとコリウム切断の大きな可能性があると 結論付けられ、複雑な形状を切断する高い柔軟性 持ち、エアロゾル濃度を最低限に抑え、有害な廃 棄物を放出しない³⁰⁾。

2.2 切断中のレーザーによるエネルギー出力の 推定

レーザービーム切断は、レーザービームによる 切断面に沿った材料の溶融と切断ガスによる溶融 材料の吹き飛ばしに依存する熱切断技術である。 その結果、切断プロセスのエネルギー要件は、溶 融を引き起こすために処理される材料のエンタル ピー変化に関連している。固体の熱量状態方程式 を適用すると、単位体積あたりのエンタルピー変 化Δh_{v.M}は次のようになる。

$$\Delta h_{\rm V,M} = \rho \cdot \left[c_{\rm p,m} \cdot \left(\mathcal{G}_{\rm m.p.} - \mathcal{G}_{\rm 0} \right) + \Delta h_{\rm S/L} \right]$$
(1)

ここに、 ρ は材料の質量密度、 $c_{p,m}$ は融点 $g_{m,p}$ と環 境温度 g_0 との温度差における平均比熱、 $\Delta h_{S/L}$ は 融解潜熱である。したがって、平均カーフ幅を $w_{Cut,m}$ 、長さを I_{Cut} 、深さ又はシート厚さを t_{Sh} を切 断するレーザービームのエネルギー E_M は次のよ うになる。

$$E_{\rm M} = \Delta h_{\rm V,M} \cdot w_{\rm Cut,m} \cdot l_{\rm Cut} \cdot t_{\rm Sh} \tag{2}$$

連続プロセスとしての切断を考えると、切断速 度v_{Cut}で長さ1_{Cut}を切断するのに必要な時間を導入 するとパワーバランスは次のようになる。

$$P_{\rm M} = \frac{E_{\rm M}}{t_{\rm Cut}} = \Delta h_{\rm V,M} \cdot w_{\rm Cut,m} \cdot t_{\rm Sh} \cdot v_{\rm Cut}$$
(3)

これは切断カーフを作成するための理論上の出 力であり、レーザービーム切断は、焦点の合った レーザービームが小さなカーフを作成できること から利点が明確となる。ただし、他の実際のプロ セスと同様に、切断手順中のエネルギー又は出力 の損失を考慮する必要がある。溶融のエネルギー 要件を提供し、損失を補償するために必要なレー ザー出力P₁は、以下のようになる。

$$P_{\rm L} = \frac{P_{\rm M}}{\eta_{\rm C}} = \frac{\Delta h_{\rm V,M} \cdot w_{\rm Cut,m} \cdot t_{\rm Sh} \cdot v_{\rm Cut}}{\eta_{\rm C}}$$
(4)

ここに、 η_{c} は切断効率である。上式を再配置すると、単位面積あたりの切断エネルギー e_{L} が得られる。

$$e_{\rm L} = \frac{P_{\rm L}}{t_{\rm Sh} \cdot v_{\rm Cut}} = \frac{\Delta h_{\rm V,M} \cdot w_{\rm Cut,m}}{\eta_{\rm C}}$$
(5)

この関係を使用すると、適用可能なレーザー出 力と達成可能な切断速度の実験的に決定可能な データから、厚さt_{sh}の材料を切断して、切断効 率 η_eと関連する出力損失P_{Loss}の値は、一次出力 損失P_{Loss,P}と二次出力損失P_{Loss,S}を区別して評価 すると、次のように推定できる。

$$P_{\text{Loss}} = P_{\text{L}} \cdot (1 - \eta_{\text{C}}) = P_{\text{Loss},\text{P}} + P_{\text{Loss},\text{S}}$$
(6)

ここに、一次出力損失P_{Loss,P}は材料に無関係な レーザー放射の反射部分と透過部分に関連する損 失で、二次出力損失P_{Loss,S}は母材への熱伝導と溶 融材料の過熱によって発生する。これらの損失は、 光学材料の性質、適用されるレーザー光源の波長、 切り口のカーフ形状、切り取られる表面の切り口 前面の傾斜及び環境条件に依存する。ただし、こ れらの主要な損失を推定、決定するために利用可能 な理論的及び実験的アプローチがある^{31), 32), 33)}。

全体として、関連する材料等の熱的物理的性質 を利用して、またFCMに類似した材料の実験室 における切断試験は信頼性のあるこれらの材料切 断の性能評価のために不可欠である。

2.3 ChNPPのFCM切断解決への方法

ChNPPのFCM切断には、対象材料の不均一組 成、不規則な形状とサイズ等、多くの課題を満た す汎用性のあるツールを用意する必要がある。 レーザー技術の一般的な利点は下記の通りである。

- ・乾式技術:切断プロセスに水やその他の液体
 も不要
- 省力(無負荷)工具:レーザーとワークピースの間に機械的接触がない
- 摩耗のない工具:保護メガネの交換などメン テナンス要件が少なく、長寿命
- •柔軟で高精度のツール:レーザーにより、3

次元運動、任意の位置への接近、及び湾曲し た切断カーフが可能

- 粉塵の形成と制御:他の乾式切断と比較して
 少ない
- ・比エネルギーが低い:他の熱的方法と比較して、低エネルギー入力
- ・遠隔操作が可能:レーザーヘッドのみが切断 部の至近距離にある

さらに、レーザービームは、動的ビーム成形技 術の使用に拡張できる。材料処理プロセス中の横 方向又は縦方向の空間高周波ビーム振動に依存 し、エネルギー蓄積と切断プロセスの固有の特性 の高度な制御が可能である^{34),35),36)}。Fig. 6は、 試験の構成(左図)とカーフの形状とサイズ及び 切り口の品質(右図)を制御するための発振技術 の可能性を模式的に示す。

モニタリングアプローチと組み合わせると、 FCMの断片化に最適な加工処理体系が可能とな る。先端(エッジ)の品質は通常、最先端の解体 又は断片化のアプローチでは重要な要素とは見な されないが、達成可能なプロセスの成果、切断カー フの形状、エッジの外観は、最大限の切削効率を 備えた信頼性の高い堅牢なレーザー切断プロセス の鍵である。すなわち、このプロセス開発は、放 射性廃棄物量を最小限に抑え性能を最適化し、潜 在的に危険な二次的放出の抑制が期待される。

Fig. 6 Schematic illustration of the experimental setup for a laser cutting/grooving process (left) and experimental results of laser cutting with cut kerf control by longitudinal oscillation of the focal layer position (right)

(Parameter: laser power = 4 kW, cutting speed = 1.3 m/min, material = stainless steel AISI 304, sheet thickness = 10 mm)

3. ChNPP発電所の解体の鍵となるレーザー 切断の研究開発計画

最先端の固体レーザーは、コリウム、FCM及 び核分裂性物質の断片化の最適な熱切断工法であ る。しかし、4号機のような特定の環境下での適 用は、個々の特殊な課題に対処する必要がある。 4号機の放射性インベントリは、種々の形の核分 裂性物質で構成され、破損した燃料要素、FCM の塊、汚染建物の破片の下に混合し、埋没し、部 分的に高度に汚染した原子力機器・設備である。 これらの構造物はすべてNSCの決められた作業 環境下において上部から下へと撤去する必要があ る。

NSCに既に設置されているインフラ基盤を使 用して、汚染された建物の破片や破損した部分的 に非常に広く汚染された機器・設備を、その後の 除染や処理のために撤去しても、FCM又は他の 高度に汚染された構造物、困難な形状の構造・強 度に対しては十分ではい。このためには、「現場 切断」が安全回収の前提条件であり、他の回収用 部材の安全な取扱いと処理最適化を並行して進め るべきである。

示されたレーザーの特性と利点及び他のサイト での成功経験に基づき、最先端の遠隔操作型固体 レーザー(Fig. 7)は、高線量率で高放射性物質 のその場切断が可能である。4号機の非常に特殊 な形態を考えると、レーザーは、主要なツールと してNSCの下で、機器・建物の安全解体とFCM の断片化に役立つ¹³⁾。

この作業を実行するための作業環境は、破壊し た原子炉構造物上でNSCを稼働させることに よって決められる。最先端の適応レーザー技術は、 汚染された頑強で大型機器・構造物の断片化と仕 分けを伴う安全な解体の主要な技術として寄与で きる。

例外的な環境下で、未解決の作業を行うための 新しい技術の実施は、サイト所有者、技術専門家、 安全の専門家、規制の専門家及び資金提供者の間 の協力行動を要する課題である。このプロジェク トは、作業環境と安全要件の明確化から始まり、 次に、断片化される問題のある対象物の特性化が 続く。データ収集と共通基盤の統合の第1段階は 現在進行中であるが、コロナウイルス禍による制 限のため、作業が遅れており、2021年の前半に終 了する予定である。

この技術の採用が決まると、レーザーの安全性、 有効性、効率に関する実行可能性と利点の予備分 析、及び4号機の課題(ダスト管理、リモート操 作、切断手順、性能など)への安全な適用の確認 が行われ、次のステップで実行される。この段階 で、資金調達の準備をすることになる。準備中の 段階は、以下のようなタスクである。

- 最先端のレーザー光源と供給者の選択と試験
- 効果的かつ効率的な切断と除去戦略と基本プロセス開発
- 予備的なプロセスのシミュレーションと最適化

Schematic of Beam Delivery

Fig. 7 Principle of remote-operated laser cutting

- ・プロセスの監視及び制御機能
- •加工ヘッドとハンドリングシステムの開発
- ・実験室規模の条件下での試験
- •NSC環境で十分かつ簡単に制御できること を確認するための、断片化プロセス中に形成 されたダストとエアロゾルの特性評価
- 研究プログラムの次のステップのための包括
 的な説明の統合
- 主要な利害関係者(サイト運営者、所管官庁、 潜在的な研究プログラムスポンサー)との協 議

研究プログラムの次のステップには、暫定的に 以下のステップが含まれる。

- 準備作業に基づきシステムを構成する技術的 要件と安全要件の定義
- コールドでの予備モックアップ試験(部品、 小規模)
- ドイツのフラウンホーファー研究所IWSにおける最初のコールド試験(Fig. 8)
- ウクライナでの実用化システムへのスケール アップと設置(サイトの内部又は近く)
- 試験及びトレーニング用のモックアップ(大規模、実物大)
- 計画された状況のシミュレーション(検索、 保守、修理)
- 計画外の状況のシミュレーションとそれらの
 管理
- 包括的なフィールドデモンストレーター (パ イロット試験)

- ・実現可能性を確認する現場試験(NSC環境で)
- デモンストレーターとしてのパイロット検索 試験(アクセス可能なエリアで)
- •包括的な検索アプローチでの結果の統合
- ChNPP又は他のプロジェクトでの他の課題 に対する調査結果の使用の拡大

おわりに

大量のFCMがオブジェクトシェルターに存在 し、NSCの下に閉じ込められている。NSCの施 設基盤を使用して上からシェルターの対象物を解 体する際に、蓄積したこの物質に接近できるよう になる。ウラン酸化物に含有するこれらの物質と 劣化が時間の経過とともにダストに変わり、それ らは健康に害を与えることを示す。

既存の経験に基づいて、遠隔操作で制御できる 固体レーザーは、FCMをブロックに断片化し、 安全に回収できるようにするための最適なツール として特定された。フラウンホーファー研究所 IWS、プレジャディス(株)、ウクライナの原子力発 電安全問題研究所によって開始したR&Dプログ ラムの目的は、15年以内に解決策を開発すること である。このプログラムは、最初の段階であるド イツのフラウンホーファー研究所IWSでの開発 と試験、それに続くウクライナでのレーザーツー ルの実証で構成される。原子力発電所安全問題研 究所での包括的な試験の後、オブジェクトシェル ター内のFCMを含む接近可能な部屋でパイロッ ト試験を実施する予定である。

Fig. 8 Central laboratory space with different laser units at Fraunhofer IWS Dresden [Source: IWS]

参考文献

- 1) Borovoy A. A., Velihov E. P., "Experience of Chernobyl, Part 1," Moscow, 2012 (in Russian).
- 2) Dr Norbert Molitor, Zoran Drace, Cécile Javelle, Plejades GmbH, "Achievements and Remaining Challenges for the Conversion of Chornobyl NPP Unit 4 into Ecologically Safe Conditions," in Publication 30 anniversary ChNPP Accident (in Russian), 140-159.
- 3) "Information on the amount of nuclear fuel at the 4 th Chernobyl NPP unit at the time of the accident," approved by the chief engineer of the Chernobyl NPP on January 30, 1996.
- 4) Pazukhin E. M., "Lava-like fuel-containing masses of the 4 th block of the Chernobyl NPP: topography, physicochemical properties. formation scenario," Radiochemistry. 1994. T. 36, no. 2. 97-142 (in Russian).
- 5) Bogatov S. A., Borovoy A. A., Gavrilov. S. L., Lagunenko A. S., et al., "Database on the location and condition of nuclear fuel of the 4 th power unit of the ChNPP before and after the accident," Project No. 2916, "Development of a Model of Nuclear Fuel Behavior During the Active Stage of an Accident," Moscow, 2007, 147 p.- (Prep. / RRC "Kurchatov Institute," No. 130-11 / 2) (in Russian).
- 6) R. V. Arutyunyan, L. A. Bolshov, A. A. Borovoi, E. P. Velikhov, A. A. Klyuchnikov, "Nuclear fuel in the «Shelter» encasement of the Chernobyl NPP," Nauka, 2010. 240 p. : ill. ISBN 978-5-02-037465-2 (bound).
- 7) Study of the influence of changes in the properties of fuel-containing materials of the Shelter on its nuclear, radiation and radioecological safety. T. 1 "Analysis of the processes of formation and behavior of lava-shaped fuel-containing materials in the Chernobyl accident" : (Research Report (Final)) / ISP NPP NAS of Ukraine. - Arch. No. 4003. - Chernobyl, 2011. - 124 pp. (in Russian).

- 8) Zhidkov, A. V., "Fuel-containing materials of 'Shelter' object today: actual physical properties and facilities for their state prognosis creation," in Technical Report INIS-UA-066, in Problems of Chornobyl – Issue 7 (2001), 18 pp out of 263 https://www.osti.gov/etdeweb/ servlets/purl/20169518#page=26 NATIONAL ACADEMY OF SCIENCES OF UKRAINE INTERDISCIPLINARY SCIENTIFIC AND TECHNICAL CENTRE «SHELTER» (2001)
- 9) B. Burakov, V. G. Khlopin Radium Institute, St. Petersburg, Russia, "Actinide behaviour during severe nuclear accident Chernobyl study of Chernobyl "lava", corium and hot particles: experience of V. G. Khlopin Radium Institute (KRI)," 58 pages, (2013).
- 10) S. V. Gabelkov, A. V. Nosovsky, V. N. Shcherbin (2016), "Degradation model for microstructure of lava-like fuel containing materials of "Ukryttya" object," 10 pp, http:// dspace.nbuv.gov.ua/handle/123456789/127769
- SSE ChNPP, equipment dismantling project. Available, online: https://chnpp.gov.ua/ en/184-projects/current-projects/591-project-qequipment-dismantlingq591
- 12) HOLTEC, HOLTEC International, FINAL CONFIRMATORY FUNCTIONAL TESTING OF CHERNOBYL' S USED FUEL STOR-AGE FACILITY BEGINS TODAY WITH HANDOVER TO THE OWNER EXPECTED THIS SUMMER; With link to video showing the process: "Process of SNF transportation from the existing storage facility into ISF-2," https://youtu.be/GYR 3 GmkRZV 0
- 13) A. Wetzig, P. Herwig, A. Mahrle, N. Molitor, V. Krasnov, "Laser cutting – An option for segregation of corium and lava type FCM," International Conference on Nuclear Decommissioning and Environment Recovery (INUDE-CO), 27-29 April 2020, Slavutych – Chornobyl, Ukraine.
- 14) B. S. Weil, "A laser cutting system for nuclear fuel disassembly," Proc. of the Int. Con-

gress on Applications of Lasers and Electro-Optics," ICALEO 1985, San Francisco (CA, USA), November 11-14 (1985).

- 15) W. D. Bond, J. C. Mailen, G. E. Michaels, "Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant," Report, Oak Ridge national Laboratory (TN, USA), report no. ORNL/TM-12104 (1992).
- 16) K. Tamura, R. Yamagishi, "Laser cutting conditions for steel plates having a thickness of more than 100 mm using a 30 kW fiber laser for nuclear decommissioning," Mechanical Engineering Journal, Vol. 3, No. 3 (9 pp) (2016).
- 17) K. Tamura, R. Ishigami, R. Yamagishi, "Laser cutting of thick steel plates and simulated components using a 30 kW fiber laser," Journal of Nuclear Science and Technology, Vol. 53, No. 6, 916-920 (2016).
- 18) K. Tamura, S. Toyama, "Laser cutting performances for thick steel specimens studied by m 8 olten metal removal conditions," Journal of Nuclear Science and Technology, Vol. 54, No. 9, 1011-1017 (2017).
- A. B. Lopez, "Laser cutting in decommissioning of Nuclear Power Stations," MS thesis, Técnico Lisboa, May 2015 (106 pp) (2015).
- 20) A. B. Lopez, E. Assunção, L. Quintino, J. Blackburn, A. Khan, "High-power fiber laser cutting parameter optimization for nuclear decommissioning," Nuclear Engineering and Technology, 49, 865-870 (2017).
- P. Hilton, A. Khan, "New developments in laser cutting for nuclear decommissioning," Proc. of the Nuclear Waste Management Conference, WM2014, March 2-6, Phoenix, Arizona, USA, Paper 14045 (15pp) (2014).
- 22) J. S. Shin, S. Y. Oh, H. Park, C. Chung, S. Seon, T. Kim, L. Lee, B. Choi, J. Moon, "High-speed fiber laser cutting of thick stainless steel for dismantling tasks," Optics and Laser Technology, 94, 244-247 (2017).
- 23) J. P. Alfillé, D. de Prunele, G. Pilot, J.

Schildknecht, J. Raoux, P. Frederick, V. S. Ramaswami, P. Muy, "Application des procédés lasers CO 2 et YAG à la découpe dans l'air et sous eau de structures métalliques – Étude expérimentale et analyse comparative," Rapport Final (in French), Rapport No. EUR 16854 FR (72 pp) (1996).

- 24) C. Chagnot, G. de Dinechin, G. Canneau, "Cutting performances with new industrial continuous wave Nd:YAG high power lasers for dismantling of former nuclear workshops - the performances of recently introduced high power continuous wave Nd:YAG lasers are assessed," Nuclear Engineering and Design, 240, 2604-2613 (2010).
- 25) J. P. Alfillé, G. Pilot, D. de Prunelé, "New pulsed YAG laser performances in cutting thick metallic materials for nuclear applications," Proc. of SPIE, High-Power Lasers: Applications and Emerging Applications, Besancon (France). September 23, 1996.
- 26) T. Yamada, T. Hanari, T. Takebe, Y. Matsunaga, N. P. Long, T. Muramatsu, "Evaluation of fibre laser cutting and crushing applied to the removal technology of fuel debris and in-vessel structures," Proc. ICALEO 2014, Paper 103, 303-307 (2014).
- 27) C. Journeau, J. Monerris, B. Tormos, L. Brissonneau, E. Excoffier, V. Testud, C. Chagnot, D. Roulet, "Fabricating Fukushima Daiichi in-vessel and ex-vessel fuel debris simulants for the development and qualification of laser cutting technique," Proc. of the 8 th European Review Meeting on Severe Accident research, ERMSAR-2017m May 2017, Varsovie (Poland) (2017).
- 28) E. Porcheron, S. Peilon, T. Gelain, C. Chagnot, C. Journeau, D. Roulet, "Analysis of aerosol emission and dispersion during the laser cutting of Fukushima fuel debris simulants," Proc. of the 26th International Conference on Nuclear Engineering, *ICONE26*, London (UK), July 22-26, 2018.

- 29) C. Journeau, J. Zanini, E. Excoffier, V. Testud, E. Brackx, C. Chagnot, I. Doyen, E. Porcheron, D. Roulet, "Aerosols released during the laser cutting of a Fukushima Daiichi debris simulant," Proc. of the 9th European Review Meeting on Severe Accident Research, *ERMSAR 2019*, Prague (Czech Republic), March 2019.
- 30) C. Georges, D. Roulet, C. Chagnot, C. Journeau, G. Canneau, S. Blanchard, E. Porcheron, "Benefits from developments in the field of decommissioning for Fukushima Daiichi fuel debris retrieval: Remote-controlled laser cutting process," Proc. of the Nuclear Waste Management Conference, WM2017, March 5-9, 2017, Phoenix, Arizona, USA.
- 31) A. Mahrle, E. Beyer, "Theoretical estimation of achievable travel rates in inert-gas fusion cutting with fibre and CO₂ lasers," Proc. of the Fifth Int. WLT-Conference on Lasers in Manufacturing, *LIM 2009*, Munich (Germany), June 2009.
- 32) A. Mahrle, E. Beyer, "Theoretical aspects of

fibre laser cutting," Journal of Physics D: Applied Physics, 42 (2009), Paper 175507 (9 pp).

- 33) L. D. Scintilla, L. Tricarico, A. Wetzig, A. Mahrle, E. Beyer, "Primary losses in disk and CO₂ laser beam inert gas fusion cutting," Journal of Materials Processing Technology, 211, 2050-2061 (2011).
- 34) C. Goppold, T. Pinder, P. Herwig, A. Mahrle, A. Wetzig, E. Beyer, "Beam oscillation - periodic modification of the geometrical beam properties," Proc. of the Lasers in manufacturing Conference 2015, Munich ICM (Germany), June 22-25, 2015.
- 35) A. Wetzig, L. D. Scintilla, C. Goppold, R. Baumann, P. Herwig, A. Mahrle, A. Fürst, J. Hauptmann, E. Beyer, "New progress in laser cutting," Lasers in Engineering, Vol. 35, 75-100 (2016).
- 36) A. Wetzig, P. Herwig, M. Borkmann, C. Goppold, A. Mahrle, C. Leyens, "Fast beam oscillations improve laser cutting of thick materials," PhotonicsViews, Vol. 13, Issue 3, 26-31 (2020).

諸外国の発電炉の廃止措置戦略及び実績 第4回 英国の主要な廃炉プロジェクトの概況と特徴

宮坂 靖彦*、澁谷 進*、榎戸 裕二*

Strategy and Experiences of Decommissioning Projects of Nuclear Power Plants in Overseas (4) Overviews of the Representative Projects of NPP Decommissioning in the United Kingdom (UK)

Yasuhiko Miyasaka*, Susumu Shibuya* and Yuji $\operatorname{Enokido}^*$

「諸外国の発電炉の廃止措置戦略及び実績」を紹介する本報では、第1回米国、第2回ドイツ、第3回 フランスに続き、英国に焦点を合わせる。英国では、パイロットプラントを含め発電炉は45基建設され、 現在、AGR型14基及びPWR型1基を運転中である。最新鋭の欧州加圧型炉2基がヒンクリーポイントC サイトで建設中である。一方、閉鎖された発電炉は、30基あり廃止措置が進められている。ガス冷却炉 (GCR)の廃止措置では、安全貯蔵方式が例外なく採用されすでに約80年間の安全貯蔵が開始された。本 報では、複数のGCR、AGRのパイロットランプであるWAGR、重水減速軽水冷却炉(SGHWR)及び高 速増殖炉(PFR)の各発電炉の廃止措置プロジェクトの概要を紹介するとともに、英国の原子力政策、 廃止措置政策、廃棄物管理政策等について述べる。

In this report introducing "the decommissioning strategy and performance of power generation reactors in overseas," we will focus on the United Kingdom (UK) as the 4th article, following the first of the US, the second of Germany and the third of France. In the UK, 45 units including pilot nuclear power reactors have been constructed so far, currently operating 14 advanced gas reactors (AGRs) and 1 PWR. Two state-of-the-art European pressurized reactors manufactured by Areva of France are under construction at Hinckley Point C site. On the other hand, there are 30 power reactors closed by 2015, and the activities of decommissioning are continued systematically. The decommissioning of Gas-Cooled Reactors (GCR) is working on decommissioning measures based on the principle of long-term safe storage of the reactor itself. This report outlines the decommissioning project of GCR, Windscale Advanced Gas-cooled Reactor (WAGR), Steam-Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactors (PFR), including an overview of laws and regulations related to decommissioning. This report also describes the UK policies for nuclear energy, decommissioning and waste management.

^{*:} 公益財団法人 原子力バックエンド推進センター(Radwaste and Decommissioning Center)

1. はじめに

英国では、2020年1月現在、AGR型14基及び PWR型軽水炉1基が運転し、原子力発電が総発 電量の約18%を占めている。新型炉の建設は、ヒ ンクレーポイントCサイトで行われいる旧アレバ 社の欧州加圧水型炉(UK EPR:163万kWe) C-1号機が2018年12月に、C-2号機が2019年12月 に着工した。電源構成は、最近の情報によると、 ベストミックスを維持するため原子力発電の重要 性が認識され、再生エネルギーと原子力発電を推 進し、石炭火力発電を2025年までに終了する。

一方、閉鎖された発電炉は30基あり、廃止措置 の活動が計画的に続けられている。また、運転中 の改良型ガス冷却炉(AGR)の14基は、2023年 以降、順次に閉鎖することが検討されている。

本報の第2章では、廃止措置規制に関わる法規 制、戦略、放射性廃棄物対策等につて最近の動向 を含めて述べる。第3章では、ガス冷却炉(GCR)、 実証炉である改良型ガス冷却炉(WAGR)、重水 減速水冷却炉(SGHWR)、高速増殖炉(PBR)等 の代表的な廃炉プロジェクトの概要を紹介する。 これらの廃止措置では、GCRの安全貯蔵準備、 WAGRの原子炉容器までの解体撤去、PBRでの ナトリウム処理などの貴重な経験している。最後 に、英国の廃止措置規制、代表的な廃炉プロジェ クトの実施経験・計画からの知見を参考に、我が 国の廃炉戦略等に対する提言を述べる。

廃止措置規制、NDAの役割、廃止措置戦 略等の概況

2.1 廃止措置に係る関連規制の概要

英国では、世界に先駆け民生用の原子炉を実用 化した国であり、閉鎖した発電炉が多くあること から廃止措置が非常に重視されている。廃止措置 に関する政府の方針は、英国政府と委任され発行 した2004年の声明及び2004年エネルギー法に重要 なポイントを示している。総合的な廃止措置戦略 の構築及び廃止措置の合理化の観点から、2004年 のエネルギー法に基づき、原子力廃止措置機構 (NDA)が2005年4月に設立された。その後、「2008 年エネルギー法」の改定、「2008年原子力自書」 基づき、原子力政策の在り方、規制の整備等が進 められている。原子力規制制は、2011年4月から 保健安全執行部(HSE)の原子力局等から原子 力規制局(ONR)という新規組織に移された。 ONRは、効率性、独立性及び透明性を高める目 的で発足し、原子力事業者への認可の発効、許可 取得者の法律遵守の検査等を実施している。

原子力施設の安全規制に関する法令の体系は、 上位法令として労働安全衛生法、原子力施設法 (NIA65法)、環境法がある。下位法令には、電離 放射線規則、原子炉規則等がある。廃止措置段階 における直接的な規制は、NIA65法の4条に基づ く「原子力サイトの許可条件」のLC35「廃止措置」 に定めている。また、廃止措置は、環境影響評価 を規則(EIADR99)に基づき審査され、許可さ れる。これらの規制の対応には、原子力施設安全 評価原則(SAPs)に基づく廃止措置技術評価ガ イド(TAGガイド:NS-TAST-GD-026)、廃止 措置安全技術検査ガイド(LC35ガイド)等が準 備されている^{1,2,3,4}。

(1) TAGガイド

このガイドは、ONR検査官に、SAPs原則、 EIADR99等に基づき、廃止措置に関する規制上 の判断を助言及び通知するためのガイダンスを提 供している。検査官は、各種のTAGガイドシリ ーズ①放射線防護、②有害廃棄物の低減対策、③ 記録と知見情報の管理、④訓練計画、⑤契約者の 技術・管理能力、⑥スタッフレベル・組織管理能 力、⑦安全性説明書、⑧放射性廃棄物の管理等を 考慮して判断し、また、検査官へのアドバイスと して、廃止措置中の責任、組織構造、請負業者の 配置、廃止措置戦略の選択、放射性廃棄物の管理 等の事項について定めている²⁾。

(2) LC35ガイド

このガイドは、TAGガイドを補足し、設置者 がLC35「廃止措置」で定めた条件の要件を満し ているか、検査官にガイダンスを提供し、検査へ の一貫したアプローチを促進することにある。こ のガイドは、①廃止措置中に合理的に実行可能な 限り労働者と公衆に対するリスクの軽減、②廃止 措置戦略に一貫性があるプログラムに関する規制 当局の承認、④安全性を理由に基づくONRの指 示による廃止措置の中止、⑤ORNの同意なしの 再開の禁止、等について定めている³⁾。 (3) GCRの廃止措置、燃料撤去及び廃棄物 (DFW)規制

NDAは、GCRの検査計画、年次レビュー、長 期間の安全貯蔵(Care & Maintenance: C&M) 段階に入る基準等を2016年に見直し、改訂された。 燃料撤去及び廃止措置と修復サイトに係る検査 は、例えば、立ち入り検査を年間10回から4~6 回に減らし、毎回3~4日となった。また、 C&M段階での立ち入り検査は、3.3節で述べるブ ラッドウェルの場合、年1回と数回の遵守検査に 限定される⁴。

(4) 原子力施設の規制解除

ONRは、原子力認可サイトの免許に関する規 制上の判断の根拠をNIA65法に基づき政策報告書 とガイダンスを公開している。その要点は、以下 のとおりである^{1),5),6)}。

- ①規制解除と許可取得者の責任期間の終了 NIA65法の条件では、ONRがライセンシー に書面で確認し、ONRがサイトに残ってい る記事からの放射線を電離することによる 「危険性がない」ことを確認するまで、原子 力認可サイトの規制解除することはできない。
- ②サイトでの認可可能な活動の終了後、除染と クリーンアップの後、サイトに残っている放 射線障害による許容可能なレベルの残留リス クは、広く受け入れられるよう合理的に実行 可能な限り低くする(ALARP)。
- ③サイト内にあるあらゆる物質からの電離放射 線による危険が存在しなくなったという見解 をONRが表明しない限り責任期間は終了し ない。即ち、10⁻⁶/年の個人の死の付加的なリ スクに相当し、広く社会に許容される。
- ④サイト全体の規制解除 -検査と評価の方法-許可取得者は、安全性説明書により規制当局 に申請し、許可取得者が実施した対象区域内 における放射能レベルの評価方法の詳細及び その結果を示さなければならない。原子力サ イト許可を取り消す前に、ONR、環境関連 機関等と協議すること。
- ⑤部分規制解除は、NIA65法第3章(6)により、 許可取得者が部分規制解除する場合にONR が要求する項目により、ONRが許可変更を 認める条件を示している。

2.2 NDAの役割等

NDAの役割は、総合戦略の構築にあり、主に BNFL、英国原子力公社(UKAEA)等の原子力 施設の廃止措置に対して総合的に責任を持ち、規 制当局との調整を含め、安全なクリーンアップ、 債務保証及び効率的なコスト管理を推進する組織 で省庁から独立した公的機関と位置付けられてい る。NDAは、イングランド(12か所)、ウェール ズ (2か所)、スコットランド (3か所)の17か 所の民間原子力遺産(原子力発電所サイト、廃棄 物処分センター等)を所有している。NDAは、 廃止措置に関わるサイト母体組織(PBO)であ るEnergy Solutions EU 社と契約している。廃止 措置等の運営は、PBO所有のサイトライセンス 会社 (SLCs) である4社、マグノックス (Magnox) 社、セラフィールド (Sellafield) 社、ドーンレイ・ サイト・レストレーション (DSRL) 社及び低レ ベル廃棄物管理 (LLWR) 社が担っている。SLCs は、認可された原子力施設のライセンスを保持し、 関連する環境機関によって発行された他の許可又 は認可に関わり原子力施設を運営し、関連組織全 体で約16,000人の強力な原子力労働者等を雇用し ている。また、NDAは、SLCs の4社に直接資金 を提供している¹⁾。

2.3 廃止措置戦略

英国の各原子力事業者は、各サイトの廃止措置 戦略と計画を作成及び維持する責任がある。廃止 措置戦略の策定には、関係する地方自治体や国民、 国家機関を含む利害関係者の意見を考慮し、労働 者と公共の安全、環境、技術(適切な技術と知識 基盤へのアクセス・維持、積極的技術開発・研究 開発の実施)、経済的要因などの関連要因を検討 し、透明な方法で客観的に示す必要がある。事業 者には、戦略を定期的に見直して最新の状態を維 持し、廃止措置アプローチに関する最新の考え方 を反映し、状況の重大な変化に対応することを求 めている。エネルギー法(2004)は、NDAに廃 止措置戦略を5年ごとに見直し、公開することを 要求している。第3回目のNDAの総合戦略は、 ①使用済燃料(SF)の安全かつ費用効果の高い ライフサイクル管理、②核物質の在庫を安全、確 実、費用対効果の高いライフサイクル管理、③廃 棄物が現在と将来の人々と環境を保護する方法で 管理、④サイトの廃止と修復について、2016年 に発表している。NDAの指定サイトは、廃止措 置と修復を確実に実施し、計画的に次の再利用の ために解放する方針である¹⁾。

2.4 放射性廃棄物対策等

英国の放射性廃棄物対策戦略の中心は、廃棄物 階層の適用、既存のLLW管理施設の最適な使用 及び新しい廃棄物管理ルートの開発である。 (1) 放射性廃棄物の分類

英国では、放射性廃棄物を発熱能力と活動量に 応じて、次の広範なカテゴリに分類されている¹⁾。

- 高レベル廃棄物(HLW):放射能の結果として 大幅に温度上昇する可能性がある廃棄物
- 中レベル廃棄物 (ILW): 放射能レベルが低レ ベル廃棄物 (LLW)の上限を超える廃棄物
- 低レベル廃棄物 (LLW): 放射能含有量 α で 4 GBq / t、 β / γ で12 GBq / tを超えない
- 超低レベル廃棄物(VLLW):
 - ・少量VLLW:規制免除令(SoLA)等を参 考に一般廃棄物処分
- ・大量VLLW:環境規制当局が指定した方 法での処分(例えば、最大濃度 4 MBq / t)

(2) LLWの処分施設

英国のLLWの処分施設は、唯一の施設を LLWR社が運営している。廃棄体には、金属製 のISOコンテナが用いている。コンテナにグラウ トを充填することによりコンテナ内の空隙が最小 限に抑えられる。コンテナは、コンクリートで裏 打ちされたボールト(Vault)に配置される。英 国のLLW量は、2016年4月1日時点で全土に蓄 積された未処分の量が約3万m³である。この大 部分は、リサイクル又は廃棄のいずれかを待って いる一時的な保管場所にある。これらの廃棄物は、 LLWR社のボールト9での将来の処分を待って 保管されるか、専門プロバイダーによる処理を受 ける場合がある。LLWR社は、2016年7月、カ ンブリア郡議会から3番目のボールトを拡張に沿 う2つの新しいボールトの開発に同意された。ま た、既存のボールトと新しいボールトの最終的な 覆い及び7つの埋め立て式のトレンチも許可され た。建設中のボールト9をFig.1に示す。

ドーンレイサイトでは、LLWを2015年4月、 ISOコンテナを用い受け入れる新しいLLW処分 施設で埋設が開始されている。DSRL社が運営す るドーンレイの処分施設を**Fig. 2**に示す¹⁾。

Fig. 1 Construction of Vault 9 at LLWR

Fig. 2 Dounreay LLW disposal facility

3. 廃炉プロジェクト

3.1 概況

第一世代のGCRは、11サイトの26基であり、 1989年から2015年の間に閉鎖した。Magnox社は、 GCRの廃止措置戦略の選択に放射能レベルの高 い大量の黒鉛ブロックがあるため、原子炉本体を 安全貯蔵するC&M方式を採用する方針で、次の 3段階に区分して計画している^{1),7),8)}。

第1段階:安全貯蔵の準備 (Care & Maintenance Preparation : C&MP)

- 第2段階:安全貯蔵(C&M)
- 第3段階:最終的な原子炉本体の解体とサイト

のクリアランス (Final Site Clearance:FSC) GCRのサイトは、すでにブラドウェルが2018 年12月に第2段階に入り、バークレー及びチャペ ルクロスが2023年までに、他のサイトも2028年ま でに第2段階に入りするよう計画されている。第 3段階での原子炉本体の解体撤去の時期は、作業 者の許容被ばくを2mSv/年と仮定すると、高価 な遠隔装置を使用しなくても炉心部の解体ができ るよう約80年経過すると約40時間/週で最適であ ると評価し、また、放射性廃棄物発生量の低減が 期待される⁹⁾。

各原子力発電所の廃止措置の概要を**Table 1** に 示す^{1), 7), 9}。

発電所名		炉型	電気出力 (万kW)	運転期間	廃止措置方式	停止理由	現状・計画 (C&M-解体-サイト解放)	
	1	GCR	16	1962.06-1984.03	安全貯蔵	経済性	安全貯蔵準備中	
N-9V-	2	GCR	16	1962.10-1984.03	"	11	(2023 - 2070 - 2079)	
ブニッドウェル	1	GCR	12.9	1962.06-2002.03	"	使命達成	安全貯蔵完了	
ノフットリエル	2	GCR	12.9	1962.11-2002.03	"	11	(2018 - 2083 - 2092)	
	1	GCR	6	1956. 08-2003. 03	"	11		
	2	GCR	6	1957.02-2001.09	"	"	安全貯蔵準備中 (認可寿命50年を短縮)	
	3	GCR	6	1958.03-2001.09	"	"		
	4	GCR	6	1959.04-2001.10	11	"		
	A-1	GCR	16.9	1964.05-1990.04	"	"	安全貯蔵準備中	
	A-2	GCR	16.9	1964.09-1990.04	"	"	(2024 - 2071 - 2080)	
	A 1	GCR	32. 1	1965.04-2000.05	11	"	安全貯蔵準備中	
	A 2	GCR	32.1	1965.05-2000.05	"	"	(2027 - 2081 - 2090)	
	1	GCR	23. 5	1965.02-1993.07	11	"	安全貯蔵準備中	
	2	GCR	23. 5	1965.03-1993.07	"	"	(2029 - 2074 - 2083)	
	A-1	GCR	25	1966. 01-2006. 12	"	"	安全貯蔵準備中 (2027 - 2088 - 2097)	
ザイスリェル	A-2	GCR	25. 5	1966. 03-2006. 12	"	"		
HX. XX	A-1	GCR	28. 5	1965.09-2006.12	"	"	安全貯蔵準備中	
ダブンネス	A-2	GCR	28. 5	1965. 12-2006. 12	"	11	(2025 - 2087 - 2097)	
	1	GCR	6	1959.02-2004.06	"	"		
	2	GCR	6	1959.08-2004.06	"	"	 	
	3	GCR	6	1959. 12-2004. 06	"	"	(2023 – 2070 – 2079)	
	4	GCR	6	1960. 03-2004. 06	11	"		
	1	GCR	23	1968.01-2012.02	"	"	安全貯蔵準備中	
オールドベリー	2	GCR	23	1968.01-2011.06	"	"	(2027 - 2092 - 2103)	
	1	GCR	50	1971. 11-2015. 12	11	"	安全貯蔵準備中	
リイルノア	2	GCR	50	1972.01-2012.04	"	"	(2026 - 2097 - 2105)	
ウィンズケール	WAGR	AGR	3. 6	1963.02-1981.04	即時解体	使命達成	・2011年RPV解体完了 ・監視管理	
ウィンフリス (SGHWR)		SGHWR	10. 2	1968.02-1990.10	安全貯蔵	開発中止	最終段階の解体を延期中	
K-2114	DFR	LMFBR	1.5	1963. 07–1977. 03	即時解体	使命達成	・2016年NaK処理完了 ・2025年解体完了予定	
	PFR	LMFBR	25	1976. 08–1994. 03	即時解体	開発中止	・2015年Na処理完了 ・2028年解体完了予定	

Table 1 Summary of decommissioning projects in the UK

3.2 バークレー原子力発電所

(1) 概要

この原子力発電所は、ブリストル海峡に流れる 英国最長のセバーン川東堤防沿いのグロスターシ ャー州のバークレー町にある英国最初の商用発電 炉である。サイトには、2基のGCR (16.0万 kWe/基が建設され、1号機は1962年6月に、2 号機は1962年10月に商業運転に入った。その後、 GCRの設計寿命(20~25年間)を超えて運転を 継続する場合には、安全性評価(LTSR)の実 施が義務付けられた。評価の結果、運転延長を認 める上で規制当局の要求条件は技術的に達成可能 であったが、1984年に経済性を理由に閉鎖した。 1992年までにSFを再処理のためにセラフィール ドに搬出作業を終了した。廃止措置は、NDAの 戦略に基づき、3段階に区分して計画されている。 第1段階のC&MPは、主冷却系の解体を1993年か ら始まり、1995年にタービンホールのような構造 物が解体された。

熱交換器(「ボイラー」ともいう)は、1996年、 撤去中及び原子炉建屋の脇の地上に横置された。 その外観写真をFig. 3に示す。その後、SF貯蔵プ ール(「ポンド」ともいう) 建屋の解体は、ポン ド内壁の汚染部を40 mmから60 mm剥離する作業 を含め、1994年から2001年4月にかけて実施され た。本サイトは、2006年までに全面積の約40%の 部分を解放している。中レベル放射性廃棄物 (ILW)である燃料要素デブリ等の回収、処理及び パッケージ化は、2016年6月に開始し、現在、継 続中である。NDA、今後の計画について、C&M 移行への許可の段取り、バークレー ILW管理プ ログラム及びC&M管理体制について、ONRとの 合意に向けて進められており、2023年にC&Mに 入り、約60年間後の2070年から解体撤去を開始、 2079年までにサイト全体を解放する^{1), 7), 8), 10)}。

Fig. 3 Photos showing boiler lowering (left) and final example of one storage location (right)¹¹⁾

(2) ボイラーのリサイクル

地上に横置きで保管されていたボイラーは、16 基のうち15基を経済性等の観点を考慮して、リサ イクルのためバークレーサイトからスウェーデン のスタズビック社に2012年末までに輸送し、処理 された(Fig. 4)。ボイラーは、厚さ28.6 mm、直 径5.3 m、全長21 m,総重量約300 tである。この ボイラープロジェクトは、2012年に発足し、スタ ズビック社への輸送を2013年3月までに完了し、 再利用のための放射性廃棄物の処理が短時間にス ムーズに成し遂げられた。輸送中のボイラーの汚 染密度は、外表面0.4 Bq/cm²(α 線)、4 Bq/cm²(β / γ 線)で制限値以下であった。また、ボイラー の外表面の線量率は、8~50 μ Sv/hであり、表 面から1mの高さで平均値1.3 μ Sv/h、最高値3.1 μ Sv/hであった。スタズビック社での解体・処 理は、解体後、鋼材ブラスト材による除染、溶融 処理によるインゴット生産の順に実施された。各 ボイラーの処理中の作業員の被ばく量は、約 8mSv/人(1.5か月)である。この解体による2 次廃棄物は、約5%で溶融過程でのスラグ、切断 やブラスト時の残留物、換気システムの塵であり、 英国に返却された。なお、溶融インゴットはスタ ズビック社の所有物となり、再溶融されて鉄鋼業 界に売却し、新たな鉄鋼製品として一般市場でリ サイクルされる。生産されたインゴットは、全重 量の96%(最高値)で自由放出が可能となった。 これは、ステークホルダー(顧客、投資家、規制 当局、契約者等)間の継続した連携体制が早期に

構築できたことが重要であったと報告されてい る。なお、残りの1基は、サイト内で減容と放射 性廃棄物が処理された¹¹⁾。

Fig. 4 Boiler load onto Self-Properlled trailer (left) and Boiler segmentation in Studsvik treatment facility (right)¹¹⁾

(3) 一部サイトの解放

規制解除に関する安全性説明書は、規制当局に 提出・承認された。関連データの収集の前に汚染 された箇所に応じたサイトの領域区分、サイト内 計測方法、サンプリング計画等について規制当局 と事前に合意した。解放条件は、放射性物質の規 制免除令(SoLA)等の基準に基づき、また、平 均的な自然バックグラウンドを超えない。測定サ ンプルは、換気ダクトや汚染の可能性がある区域 などから採取され、0.4 Bq/gの基準値と比較さ れた。その結果、2006年、サイト全体27 haの一 部11 ha(40%)について、エネルギー・気象変 動省(DECC)国務大臣の承認を得て、指定解除 が達成された。一部サイト解放での教訓に、次の ことを挙げている^{10,12)}。

- ②チームに経験及び専門性があること
- ③ステークホルダーグループとの適切なコミュ ニケーション
- (4) ボールト内に保管中のILW等の回収、処理

ILWは、仮保管庫を構築後、廃棄物の回収、 処理及びパッケージ化が進行中である。複雑な混 合廃棄物(ILW)は、サイト内に4基の地下保 管施設(ボールト)あり、運転段階で発生した燃 料要素デブリ(FED:約620 t)、放射性排水及び ポンドの水処理プラントからのスラッジと樹脂及 びその他の汚染物が下記の3基に蓄積されてい る。

- ・ボールト1:約270 tのFED及び855缶のイオン交換樹脂
- ・ボールト2:約350 t及び310缶のその他の汚
 染されたもの(MCI)
- ・ボールト3:約1,400のスラッジ缶と約5,000 のMCI缶

すべてのILWになると予測していが、革新的 な回収技術と分離のキャンペーンにより、その一 部を低レベル廃棄物及び超低レベル廃棄物として 処分した。FEDを含む保管庫での回収及び処理 機器の積極的な試運転が行われた。処理機器の設 計は、2010年に始まり、機器の製造、設置、テス トは2013年から実施された。ILWは、遮蔽ダク タイル鋳鉄コンテナ(DCIC)に収納され、バー クレーサイトの中間保管施設(ISF)に移される 前に、調整施設で充填及び乾燥される。ボールト 2からのILWの回収は、2016年6月に開始され、 2017年現在、88 tのFEDが54体のDCICに回収さ れ(Fig. 5)、乾式貯蔵施設が利用可能になるま でISF保管される¹⁾。

(a) Beginning of retrieval operation

(b) After removal

Fig. 5 Berkeley fuel element debris of vault 2¹⁾

3.3 ブラッドウェル原子力発電所

(1) 概要

この原子力発電所は、ロンドンの東北東 70 km の海岸の入江に、GCR (125 MWe/基) 2 基が建 設され、1962年に運転開始、40年間運転後の2002 年に恒久停止した。運転停止後、清浄化作業が行 われ、2005年に炉心からの燃料取出し作業を完了 した。Magnox 社は、廃止措置プロジェクトの計 画概要を EIADR99 規則に基づき、提出し、2003 年にHSE(現、ONR)から承認された。HSEは、 5年以内にプロジェクトを開始、環境への影響を 低減する等の準備など、5つの許可条件に基づき 許可した。HSEは、2003年の申請内容を詳細化 したサイト環境管理計画を、2014年2月に承認し た。廃止措置プロジェクトは、第一段階のC&MP 作業として2011年にタービンホール解体が行われ た。2018年12月には英国で最初にC&Mに入った (Fig. 6)。同発電所は70~80年間のC&Mの貯蔵後 解体撤去、敷地の規制解除を行う予定である¹³⁾, 14), 15)

(2) C&Mの要件

ブラッドウェルサイトは、他のサイトに先行し てC&MP活動を通して安全評価原則(SAPs)の 原則を示すこととなった。C&M受動的安全性の 要件は、下記の方針を決めた^{15),16),17)}。

①能動的安全システムの極小化、②必要な検査、 保全及び監視機能の極小化、③施設を安全に維持 するための人的関与無し、③固体、液体、気体の 環境への放出は極小化、④無許可の放出の回避、 ⑤非常時対応要求は極小化、⑥放射性廃棄物は容 器封入・遮蔽、⑦内部、外部構造物をFSCまで の約100年間程度形状を維持し安全を確保。

さらに、ブラッドウェルではC&Mに入る状態 (形態)として、C&M安全審査書の中で以下のこ とが記述されている。

①2つの原子炉建屋:構造物で囲う

②中レベル廃棄物:回収し、小型貯蔵庫で保管

- ③構造物の地下を残す場合:許容レベルまで除染
- ④排水口:施栓するかモルタル注入
- ⑤汚染された敷地部分:現状復帰
- (3) Magnox社のC&M戦略に対する規制機関(ONR)の審査

ONRは、原子炉及び一次系機器の廃止措置を 先送りするための適切な対応策であるとし、 C&M戦略は2013年1月に承諾した。また、ONRは、 このC&M戦略に対して2基の原子炉建屋等を安 全・安定状態でC&Mに入ると原子炉建屋の覆い が貯蔵中の放射性物質の環境条件による劣化によ り、放射性廃棄物量が増加、汚染の拡散に通じる 格納設備の破損が生じる可能性を指摘した。 Magnox社は、C&M時の覆いが既存建屋のフレー ムに新しいフレームを取り付け、その上にアルミ・ シートで覆い、与圧換気システムを使って水分の 浸入を制限する方式を選択し、保守が容易になる とした。ルーバーと合体させた被覆シートに水漏 れが起きないようにシールし、凝縮を最小化する ために特定のエリアを換気すること等を提案し た。ONR は、雨水の浸入及び凝縮形成リスクの 最小化に資する解決策であると判断した¹⁸⁾。 (4) ボイラーの撤去又は長期保管の課題

ブラッドウェルのボイラーは、バークレーのよ うに撤去することも検討されたが、原子炉本体と 一体にするC&M方式を選択した。原子炉圧力容 器から切離して長期保管するためボイラーの倒壊 から内部から汚染物質の放出リスクがあることが 危惧され、対策が検討された¹⁹⁾。

(5) 解体で発生した廃棄物対策

放射性廃棄物は除染・圧縮等により減容処理する。汚染土壌のLLW/VLLWは、最終サイト解放まで管理し、減衰効果により放射性廃棄物の低減を期待する¹⁹⁾。

(6) C&MP段階

C&MPの完了後に、受動的安全状態を維持し、 人の介入が最小化されるC&Mに置かれる。その ため下記の撤去、管理が行われる¹⁹⁾。

(a) 不要建屋の撤去、新設貯蔵庫

放射性物質を含まないプラント及び建屋を 解体する。中レベル放射性廃棄物は、現在の 貯蔵位置から回収・処理され、地下処分施設 まで新設の一時貯蔵庫に保管される。

(b) フィルター、アスベストの有害廃棄物の保

管、処理

Magnox社は、粉じんを回収し、有害物質 を安全に閉じ込める鋳物の金属容器に移し替 える装置を設置の設置方法をさらに研究し合 理的な除去又は固定化する。

(c) ポンドの除染・塗装

SFポンドの汚染核種は、Sr-90とCs-137で 約80 %を占め、その他、Pu、Am-241等が存 在する。表面から5mm以内にAm-241 (99.9%)とCs-137 (99.8%)存在する。建 設時のエポキシ塗装内にAm-241 (96%)と Cs-137 (80%)が存在するポンドは、除染・ ポリウレタン塗装により汚染物を固定化した。

(7) C&M管理体制

Magnox社の最終目的は、全サイト(Winfrith を除く)の「C&Mハブ」とする一括管理体制の 実現であり、ブラッドウェルが最初のC&Mハブ となり、中期的には幾つかのC&Mハブが形成さ れ、長期的には中央C&Mハブが全Magnox発電所 のCM状況を一括管理する¹⁴⁾。

Fig. 6 Views of Bradwell power station at operation period (left)¹⁵⁾ and C&M ready state with all weather proof enclosure (right)¹⁸⁾

3.4 ヒンクレーポイントA原子力発電所

(1) 概要

ヒンクレーポイントサイトは広大であり、サイ
 トAに2基のGCRを廃止措置中、サイトBにAGR
 型発電炉2基が稼働中、また、サイトCにPWR
 型発電炉(UK EPR) 2基が建設中である¹⁾。

サイトAの2基のGCRは、外観を**Fig.7**に、また、 サイトの様子を**Fig.8**に示す。1965年に運転開始、 約35年間順調に運転し、さらに運転を続ける計画 であった。耐用年数45年を目指して、複雑な遠隔 操作による炉内の補修と改良を行うために、1999 年4月に停止した。しかし、内部への接近が困難 であることから、2000年5月、改修を断念して閉 鎖を決定した。廃止措置は、NDAの戦略に基づき、 3段階に区分して計画されている。2004年までに 燃料の搬出作業が終了し、SFを再処理のために 搬出されたことから、オフサイトの緊急計画の要件を解除した。第一段階のC&MPは、EIADR99
 規則に基づき、HSE(現、ONR)が2003年に認可した。C&MPは、現在、2027年までにC&Mを

Fig. 7 Hinkley Point A nuclear power satation²⁰⁾

(2) 廃止措置に必要な施設の建設

廃棄物暫定保管施設(ISF)、モジュール式中 レベル廃棄物体化プラント及び事前コンディショ ニング施設(PCF)をC&MPの初期に完成した。 また、モジュール式放射性廃液処理プラント (MAETP)を設置し、既存の廃液処理プラント (ETP)と置き換えた。MAETPは、廃止措置活 動で発生した低レベルの放射性廃水を処理する。 なお、ETPは、第2段階のC&Mで再使の予定で ある²⁰⁾。 達成するため、サイトを受動的安全な状態にして 人間の介入による管理の最小限を目標に進められ ている^{1),7),20)}。

Fig. 8 View of Hinkley Point A from Quantock Hills²⁰⁾

(3) タービンホールと関連する建物の解体
 タービンホール建物等の解体は、C&MPで実施
 された最大の単一プロジェクトである(Fig. 9)。
 このプロジェクトは、費用700万ポンドであり、
 12,000 tを超える廃棄物が発生し、そのうち90%
 近くがリサイクルの対象となった。すべての解体
 及び関連する活動は安全に実施され、環境へのリ
 スクが最小限に抑えるように管理された²⁰⁾。

Fig. 9 Turbine hall demolition – Before (left) and After (right)²⁰⁾

3.5 オールドベリー原子力発電所

(1) 概要

この原子力発電所は、ブリストル海峡に流れる セバーン川南堤防沿いのサウスグロスターシャ州 にGCR(23.0万kWe/基)2基が建設され、1968 年に運転開始、その後、約45年間の運転寿命を達 成し、2号機が2011年6月に、また1号機が2012 年2月に運転を恒久停止した。その後、2016年1 月までに燃料撤去し、SFを再処理のためにセラ フィールドへの移送を完了した。Magnox Electric Ltd(現、Magnox社)は、運転中に2007年3 月、EIADR99規則等に従って、オールドベリー の廃止措置の承認を得るためHSEに環境評価書 を添付して申請した。HSEは、公開協議の後、 2008年2月に正式に同意した。廃止措置は、 NDA基本戦略に基づき、3段階に区分して実施 する計画である。

第1段階の作業として、SFポンドの機器・除 染を2016年から開始し、現在、最終段階にある。 また、中レベル廃棄物(ILW)の回収、処理及 び輸送方法をONRの許可を得て、2018年から開 始された。Magnox社.は、2027年以降のC&Mの 管理体制の確認について、ONRと合意に向けて 進めている。この原子力発電所の外観及びC&M 予想図をFig. 10に示す^{1),7),21)}。

Fig. 10 View of Oldbury site (left)¹⁾ and site assumption map of C&M (right)²¹⁾

(2) 一部サイトの規制解除

このサイトでは、SFポンドの冷却配管のクラ ックにより2号機の近くの土壌が放射性物質の漏 洩による土壌汚染のトラブルを1976年に経験して いる。地下水のモニタリングで汚染核種である Sr-90、Cs-137及びH-3が検出された。1977年以 降もコアボーリングによるモニタリングを継続し ていたが汚染拡大はなかった。再確認のため土壌 及び地下水の核種の移動可能性を調べるため 2007/2008年にボーリングによるモニタリングを 追加した。それでも、すべてのゾーンが汚染の可 能性があると想定し、確認測定が実施された。測 定には、低グロスカウンター (LRGS: 3×3 in NaI) 及び高分解能 γ サーベイメータ (HRGS) で行った。また、念のため表面及びコアボーリン グによるサンプル採取による測定もされた (Fig.11参照)。高分解能 γ サーベイメータの測定

は、地上1mの高さでのコリメータなしの高純度 Ge検出器 "ISOCS" をベースに、Cs-137とCo-60 の検出限界値 (MDA) を0.02 Bq/gとし実施した。 低グロスカウンターの測定は、329,000地点で実 施し、結果は、450 cps以下で信頼レベル95%以 上である。測定結果は、Cs-137が最大0.065 Bg/ gであり、IAEAのRS-G-1.7のクリアランスレベ ル (0.1 Bq/g) より低く、また、ボーリングに より、地下6.5 mまで、各2m毎に3 試料までサ ンプル採取し、安全基準を満足した。さらに、健 康保護庁 (HPA) は、サンプル採取及び分析を 独自に実施された。これにより、Magnox 社のサ ーベイ結果は、非管理区域)内の放射線状況と同 じ、妥当であることが確認された。サイトの保全 フェンスの外側は、最終的にHSE、HPA及びEA の協議に基づき、32 ha(全体の69%)の部分を エネルギー・気象変動省 (EDCC) 国務大臣の承 認を得て、2011年に規制解除された。このサイト は、英国で一度に指定解除された最大の土地で、

Fig. 11 Borehole sampling 12)

将来の新原子力発電所の候補地に挙げられている。サイトの規制解除区域を**Fig. 12**に示す¹²⁾。

規制解除区域;1,2:シルト環礁、3,4,5:草原、 6:道、駐車場、排水施設、7:建物、8:建設廃棄物 Fig. 12 Delicensing area zones¹²⁾

(3) SFポンド内の機器撤去・除染

ポンド内の機器撤去及び除染作業は、ダンジネ スA、サイズウェルAでの経験を参考に進められ た。第1段階の作業として、2016年4月、ポンド の機器撤去から開始された。作業は、ポンド水を 排水する前に空の容器、プールの床に堆積したス ラッジ、その他の破片を取り除くことで、困難な 放射性環境下で行われた。オールドベリーの廃棄 物は、ダンジネス、サイズウェルと合わせ40 t、 高度に汚染されたカートリッジ、フィルター、ス ラッジ等を処理し、遠隔作業で廃棄コンテナ (MOSAIK)にパッケー化した。中央廃棄物チー ムと緊密に協力して、当初計画で必要としたMO-SAIK 24体から10体に低減した。オールドベリー のポンドでは、現在、ポンド下床を高圧ジェット で除染し、洗浄後の残留を確認調査を実施してい る。ポンド内の機器撤去及びプール内のスラッジ 撤去後の様子をFig. 13とFig. 14に示す^{21),24)}。

Fig. 13 Desplitter machine removal (left) and flat top size reduction (right)²¹⁾

Fig. 14 Pond floor surface after sludge removal²¹⁾

3.6 ウィンズケール(WAGR) 原子力発電所(1) 概要

WAGRは、改良型ガス炉(AGR)の実証炉と して建設され、18年間の運転後、1981年に役割 を終え停止した。この発電炉の廃止措置は、EC 委員会の原子炉解体研究開発プロジェクトの一つ に指定された。WAGR閉鎖後の解体の経過を **Table 2**に示す。原子炉本体は、10段階区分して 実施し、1999年から開始し、2011年に完了した。 その後、解体撤去作業は、セラフィールドサイト の他のプロジェクトを優先するため、生体遮蔽体、 建屋の撤去工事を休止し、施設は、現在、監視管 理されている^{71,251,261,271}。

Table 2	Summary	of WAGR	decommissioning
	Gamma		accontinuosioning

	工事内容等
1982-1983	 初期廃止措置作業の開始 ・燃料撤去完了
1989	燃料交換機の解体撤去を完了
1990-1992	原子炉上部生体遮蔽及び原子炉圧力容器上部ドームの撤去とその位置に解体作業可能 な特殊遮蔽体設置
1993-1994	中レベル廃棄物(ILW)貯蔵庫建設
1994-1995	蒸気発生器(4基)の一括撤去・ドリック処分場へ搬出・埋設
1995	解体廃棄物移動ルート・廃棄体化装置設置
1997-1999	放射能のない部分の解体完了
1999-2011	原子炉本体の解体撤去

(2) 原子炉本体の解体

原子炉本体(黒鉛ブロック、炉心下部構造物、 原子炉圧力容器等)の解体は、原子炉上部に遠隔 解体装置を設置して、マニュプレータを用い実施 した。これらの解体撤去時の廃棄物の流れをFig. 15に示す。マストの下部のマニピュレータープ ラットフォームに取り付けた改良型マニピュレー ター(到達距離2m、最大操作荷重100 kg)を Fig. 16に示す。解体撤去ツールとして、炉心上 部構造物及び中性子遮蔽のためにプラズマ・トー チ、黒鉛ブロックのためにつかみ冶具、原子炉圧 力容器及び断熱材のために鉄パウダー入りガス切 断が用いられた^{25),26),27)}。

Fig. 15 Cross-section of WAGR²⁵⁾

Fig. 16 Mast assembly with manipulator platform ²⁶⁾

(3) 廃棄物ボックス

このボックスの設計と開発及びそれに伴う廃棄 物体化プラントは、Nirex(現、NDAの放射性廃 棄物管理局)の設立前に完了した。LLW及び ILW用のボックスは、将来の処分ルートを確実 に利用できるようNirexに承認を求め、了解され た。ILW廃棄物ボックスは、廃棄物処理建屋か ら少し離れた場所にある専用の保管庫に保管され た。ボックスの構造と保管建屋での保管状況を Fig. 17に示す。保管/廃棄に採用されたボックス は、2.4×2.2×2.2 mの長方形の鉄筋コンクリー ト製である。ボックスの囲い壁は、構造の完全性 とIP-2規格への内容物の放射線遮蔽の両方を兼 ねている。ボックスの寸法は、WAGR熱遮蔽板 と黒鉛ブロックを切断せずに収容できるように選 択された。内容物により遮蔽要件に応じて、2種 類のコンクリートを使用してボックスを構築して いる。LLW用のボックスには通常密度(2.4 t/ m³)のコンクリートが使用され、ILW用のボッ クスには磁鉄鉱岩の骨材を使用して高密度(3.9 t/m³)の混合物にして使用した²⁷⁾。

Fig. 17 WAGR waste box (left) and box store (right)²⁷⁾

3.7 ウィンフリス (SGHWR) 原子力発電所(1) 概要

SGHWR (Steam Generating Heavy Water Reactor) は、ドーセット州にあるウィンフリス複 合原子力サイトに立地する重水減速軽水冷却圧力 管型炉の発電実証炉 (100 MWe) である。 SGHWRは、1963年に着工、4年間の建設期間を 経て1968年に運転を開始し、燃料に微濃縮ウラ ンを使用、平均設備利用率約60%で23年間運転 され、1990年に恒久停止された。廃止措置プロ ジェクトは、Magnox 社がNDAから受託し進めて いる。ウィンフリスサイトの一部は、現在、解放 され他の目的(非原子力)で再利用されている。 SGHWRの跡地は、更地に復旧した後、造園され る計画である。運転中のSGHWRの全景をFig. 18 に、年表をFig. 19に示す²⁸⁾。現工程では2021年 に廃止措置完了とされていたが、NDAの年報 (2018/19年)によれば、遅延が余儀なくされている。

Fig. 18 Overall view of Winfrith SGHWR

Fig. 19 SGHWR timeline

(2) 廃止措置の第一段階²⁸⁾

第一段階の廃止措置は、炉心からの燃料集合体 279体の取り出しとセラフィールドへの移送から 開始され、減速材である重水系の洗浄とドレーン (重水にはトリチウムを含む)、燃料ポンドのドレ ーンと除染、一次系(再循環系)など各系統のド レーンが実施された。並行して、冷却塔の解体撤 去、ディーゼル建屋や制御室などの解体撤去が行 われている。

SGHWRの廃止措置の一環として実施された主要なプロジェクトは、4基の屋外汚泥タンク (EAST)に留された放射能を含むスラッジの廃棄 体化である。このために廃棄物化処理プラント (WETP)が設計・建設された。WETPは、2005 年から2011年まで操業され、1,000ドラム缶以上 の汚泥を処理し、敷地内貯蔵施設に移送後、空の 汚泥タンクとWETPは除染・解体撤去された。 (3)廃止措置の第二段階^{28), 29)}

第二段階の廃止措置作業は2005年から開始され、二次系格納建屋の250以上の部屋やエリアか

Fig. 20 Lifting out of the rotating shields

ら主要な大型設備機器が解体撤去された。また、 120フィートの敷地内で最も高い構造物である換 気スタックも撤去された。以下に設備機器の細断 に用いられた切断方法を例示する。

- 燃料交換機回転シールド:ペトロジェン切断 (石油と酸素ガスの混合)
- 燃料交換機(合計約760 t): プラズマアーク 切断(Fig. 20)
- 蒸気タービン・ロータ:ダイヤモンド・ワイ ヤソー (Fig. 21)
- 復水器及び細管:ガス切断、酸素・アセチレントーチ切断、チップソー

このように、金属を効率的かつ経済的に細断す るために一般産業界で実績のある各種の熱的切断 が適用された。ダイヤモンドワイヤー切断は、鉄 筋コンクリートの換気シャフト、高圧ローター、 高圧水タンク、EASTのコンクリート壁を切断に も使用された。また、高圧水ジェットが、原子炉 と冷却塔を繋いでいた地下冷却水配管の切断に使 用されている。

Fig. 21 Diamond wire-sawing LP rotors

(4) 廃止措置の最終段階^{30), 31)}

二次系格納建屋と屋外の付帯設備の解体撤去が 完了したことで、最終段階のステップとして、 2013年より一次系(再循環系)及び原子炉本体 の解体撤去が開始された。最終段階における解体 撤去の対象となる原子炉本体及び原子炉周辺の主 要な設備機器を、Fig. 22に示す。

原子炉本体を他の設備機器から隔離するため に、実物大のプラントのモックアップを使用した リハーサルなど数か月間の計画と準備が行われて いる。原子炉本体系と連結する、重水系や主蒸気 系などの配管の封止、ポンプ、圧力逃がし弁など の主要な機器が撤去され、蒸気ドラムを含む一次 系(再循環系)にアクセス可能となった(リハー サルから得た教訓は、原子炉本体及び一次系を撤 去する際にも活用される)。

Magnox社は、原子炉領域の解体撤去を計画、

Fig. 22 Reactor core and peripheral systems

実施について、JFN社(James Fisher Nuclear Ltd)とターンキー方式で請負契約を締結した。 同社は、遠隔操作のツールを設計、構築し、原子 炉本体と周辺機器の細断化及び廃棄体化する技術 を開発した。 重量が約35 t の上部中性子遮蔽 (UNS)の解体撤去は、技術的な課題の1つであ った。JFN社の方法論は、3Dモデリングシステ ムを多用して設計開発し、既製システムと特注の 機器を組み合わせて利用し、原子炉本体を遠隔で 解体撤去するために必要な機器・システムを統合 することである。JFN社によれば、原子炉本体は 炉心下部からジャッキアップされ、炉心上部で遠 隔操作機器により順次細断、解体撤去され、隣接 するエリアに移送されパッケージされる。原子炉 本体領域の解体撤去方法のイメージをFig. 23に 示す³²⁾。

Fig. 23 Segmentation image of reactor core

3.8 実験用高速炉(DFR)

DFR (Dounreay Fast Reactor、熱出力60 MW (15 MWe)) は、英国スコットランド北部の海外 沿いに1955年~1958年に建設され、国内電力網 に接続した世界最初の高速中性子炉で、1963年 に運転開始し、1977年3月に廃止措置のために 恒久運転停止した。

DFRは、24ループを有するループ型炉で各ル ープは二次系冷却系及び崩壊熱除去系(DHS) の熱交換器を備えている。主循環系の全配管は、 二次系とDHSで二重で囲まれるかリークジャケ ットで囲まれる。一次系配管は、9 kmを超える、 コンクリート製生体遮蔽体(壁)で囲まれている。 冷却材は、Naが70%のNaK液体金属混合物であ る。DHSは、NaK共晶合金(78% Na)であり-12℃まで液体状態で存在する。1967年にリーク ジャケットへの主循環系Naの漏洩が発生し修理 した。この際、効率の良くないコールドトラップ を撤去し、外側に付けた。二次系とDHS系の NaKは、1970年にドレーンされ、水処理によっ て中和された。1980年代の初めに、プロジェク トは中止され、原子炉は1990年代後半まで管理 と保守が続けられた³³⁾。

廃止措置の初期段階は、2006年、2018年まで に完了する計画した³⁴⁾。その後、2014年の時点 でNaKは主循環系から除去され、二次系NaK等と 同様な処理が実施され、二次系とDHS系統は切 断され生体遮蔽体(壁)にところで閉塞させたが、 残留アルカリ金属で汚染されていた。この時点で 原子炉容器内のプールと附属容器内に残る残留 NaKの最小化を行っている。しかし、これらの容 器の内3基ではホットトラップがジルコニウムの 薄板で作られておりNaKが容器から除去されても、 最小化に当たってうまくドレーンできない³³⁾。 2015年11月までに二次系の金属冷却材の処理や タービンの撤去とその建屋解体、原子炉と熱交換 器を繋いでいた配管などの撤去を実施した。 DSRL社は、DFRの NaK金属冷却材、約68 tの 処理が完了したと2016年8月に発表した。

NDAが管理するサイトの中でも、非常に危険 性が高いとされていたNaK冷却材を1次系から抜 き取った後、水素ガスと塩水に安全に転換すると いう作業を10年かけて終了した。欧州で最も複 雑な廃止措置の作業は、今後、主循環系配管、原 子炉除染及び撤去を行う予定である³⁵⁾。また、燃 料貯蔵槽の機材 、スラッジの撤去及びNak処理 施設の建設を完了し、ブランケット燃料撤去プラ ントの建設も進めている³⁴⁾。

3.9 高速原型炉 (PFR)

(1) 概要

PFR (Dounreay Prototype Fast Reacor、250 MWe) は、DFRの後継炉として北スコットラン ドのドーンレイに建設され1974年の臨界後、国 内の電力網に接続し営業運転を開始し、1994年3 月に恒久停止した。PFRは、3ループ型のタン ク炉で1,500 tのNa冷却材で熱伝達し蒸気発生器 の蒸気で発電した。PFRの原子炉容器内の機器 配置図をFig. 24に示す。炉心からの燃料撤去は 1995年まで、Na処理を2015年までに完了した。 1996年11月までにタービン建屋からタービン、 発電機、その他の付属機器が撤去された^{33), 36)}。原 子炉の解体は、現在、2028年完了を目標に進め ている⁸⁾。

Fig. 24 Bird's-eye view of PFR reactor and installation of equipment³⁶⁾

(2) WVN法、NOAH処理等

主循環系及び二次系の全Naは、除去され処分 用に処理され、崩壊熱除去系(DHS)のNaKも 全てNa処理中にそれに添加して一緒に処理され た。二次系Naは、WVN法(Water Vapor Nitrogen法:窒素ガス雰囲気下でのスチームによる反 応を利用)により循環系統内を完全に洗浄できた。 原子炉容器には約915 m³のNaがあったがその内 8 t 以下が容器の底や配管の曲部と金属膜として 残留している³³⁾。二次系に245 t、さらにNaタン クや燃料セル380 t のNaが残留する。

主に多量のNa処理は、実績のあるNOAHを採 用、処理プロセスを**Fig. 25**に示す³⁶⁾。

Fig. 25 Treatment flows of NOAH process adopted at PFR

4. まとめと提言

英国で閉鎖した発電炉は30基であり、また、運転中のAGRも2023年以降に順次閉鎖が予想されている。英国は、廃止措置対策を極めて重要な課題と捉え、最適な戦略構築、実施に向け取り組んでいる。英国の廃炉関連規制、廃炉戦略の選択、廃棄物対策及び代表的な廃炉プロジェクトの主要な概況と特徴について、以下に要約する。

- ・ONRは、効率性、独立性及び透明性を高める 目的で2011年4月に発足し、原子力事業者への 許認可、法律遵守の検査等を実施し、各種のガ イド整備し、規制業務の円滑化に寄与している。 また、環境規制当局は、廃止措置計画の認可、 規制解除の審査及び測定・評価に関わっている。
- ・NDAは、総合的な廃止措置戦略の構築及び廃 止措置の合理化の観点から、2005年4月に設立 された。NDAは、各サイトを担当するサイト ライセンス会社(SLCs)とともに規制当局と の調整、先行しているサイトでの経験を、後続

サイトへの技術継承を図るなどに寄与している。

- ・英国でも増大する放射性廃棄物の処理処分が課題となっている。LLW処分施設の確保のため施設の増設、新設による対応し、廃棄体にISOコンテナを用いている。また、ILWは、処分場が確保できていないため中間貯蔵されている状況で課題となっている。
- NDAとSLCs(Magnox社)は、GCRに対し C&M戦略を採用している。ブラドウェルは、 2018年12月に第2段階のC&Mに入り、他のサ イトもブラドウェルの経験を参考に順次2028年 までにC&Mに到達させる計画である。
- ・英国の原子力政策は、再生エネルギー利用と合わせベストミックスを維持するために原子力発電を推進している。この政策を受け、ヒンクレーポイントサイトでは、サイトAの2基がC&M戦略の最終段階にあり、隣接のサイトCに2基の新型軽水炉を建設中である。また、オールドベリーサイトは、一部サイト解放の許可に基づき、新設の発電所の建設候補地になっている。

- ・WAGRは、遠隔解体技術の開発導入により放 射能の高い炉心部等の解体撤去に成功し、 2011年以降、他のサイト廃止措置を優先する ため監視管理下にある。
- ・SGHWRは、第2段階までほぼ終わり、最終段 階の解体を延期している。
- ・DFRは、2016年8月までにNaKの処理を完了し、2025年目標に解体撤去中である。
- PFRは、2015年までにNa処理を完了し、2027
 年目標に解体が進められている。

我が国の廃炉基数は、福島第二発電所の4基の 廃止措置の認可申請が2020年5月に行われ、これ らを加えると27基となり、廃炉対策と廃棄物処 理処分の対策が極めて重要な課題である。JPDR の解体を1996年に完了してから約25年を経過し、 改めて、体制を含む戦略の構築、技術継承の重要 性を再認識する必要がある。最後に、廃止措置等 に関する提言を以下にまとめる。

- ・サイト再利用を含む総合的な廃炉戦略を構築すること
- ・廃炉技術・放射性廃棄物対策の諸外国との積極 的な交流とノウハウを共有化すること
- ・プラント運転保守経験者の積極的な活用を図る こと
- ・放射性廃棄物リサイクルセンターの設置と廃棄 物の再利用
- ・代表的なプラントによる先行する廃炉活動の完 結

参考文献

- 1) "The United Kingdom's Sixth National Report on Compliance with the Obligations of the Joint Convention on the Safety of Spent Fuel and Radioactive Waste Management," October 2017.
- TAG Guide, "ONR, Decommissioning, Nuclear Safety Technical Assessment Guide," NS-TAST-GD-026 Revision 5, Sep. 2019.
- LC35 Guide, "ONR, Decommissioning, Nuclear Safety Technical Inspection Guide, NS-INSP-GD-035 Revision 5," April 2019.

- 4) Mina Golshan, "Regulation of the Shutdown Defueling and Decommissioning Reactors in the United Kingdom," WM2016, March 2016.
- 5) HSE, "HSE Criterion for De-licensing Nuclear Sites," May 2005, www.onr.org.uk/delicensing.pdf.
- 6) HSE, "De-licensing Guidance; Guidance to Inspectors on the Interpretation and Implementation of the HSE Policy Criterion of No Danger for the De-licensing of Nuclear Sites," 13 August 2008.
- 7) NDA, "Business Plan, 1 April 2018 to 31 March 2021," March 2018.
- 8) NDA, "Draft Business Plan, April 2020 to 31 March 2023. Cleaning up the UK's earliest nuclear sites, caring for people and the environment," December 2019.
- 9) Paul B. Woollam, "Reactor Decommissioning in the UK," TLG Decommissioning Con.10/ 2002.
- 10) NDA, Berkeley Site Summary, Lifetime Plan 21. 2006/2007.
- 11) Bo Wirendal, et al., "Berkeley Boiler Project," Studsvik Symposium, April 2014.
- 12) W. A. Westall and B. L. Tawton, "Radiological Characterisation Experience with Magnox Reactors", Workshop on Studsvik, Nyköping, Sweden, April 2012.
- 13) "UK's Bradwell site enters care and maintenance," World Nuclear News, 30th Nov. 2018.
- 14) Jonathan Bankhead, et al. Magnox, Ltd, "Bradwell - The first UK Nuclear Site to Enter Care and Maintenance," WM2018, March 2018.
- 15) "International Peer Review for The Decommissioning Programme of Magnox Limited (U.K) with Bradwell as the Reference Site," IAEA-NS-2011/ December 2011.
- 16) ONR, 2014 Update of the Safety Assessment Principles for Nuclear Facility, http://www. onr.org.uk/consultations/2014/
- 17) ONR, "Permissioning of Bradwell Licensed Nuclear Site into Care and Maintenance," Pro-

ject Assessment Report ONR-SDFW-PAR-17-001 Rev.0 2017.

- ONR, "Bradwell Accelerated Decommissioning - Reactor Safestore Cladding," NR-BRA-PAR-12-063 - Rev. 0 January 2013.
- 19) Magnox Limited, "Bradwell site : Environmental Management Plan 2014/2015," 2014.
- 20) Magnox Limited, "Hinkley Point A Site, Environmental Management Plan," October 2019.
- Magnox Limited, "Oldbury Site, Environmental Management Plan (Decommissioning)," Issue Eleven 2018.
- 22) NDA, "Business Plan," 1 April 2018 to 31 March 2021.
- 23) NDA, "Oldbury Site Summary, Lifetime Plan 26," 2006/2007.
- 24) "Cleaning up Magnox ponds," Nuclear Engineering International, May 2020.
- James Varley, "Windscale: getting down to the core," Nuclear Engineering International, Nov. 1997.
- Terry Benest, "Taking up arms for decommissioning," Nuclear Engineering International, Aug., 2004.
- 27) Chris Halliwell, "The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns," WM2012 (2012).

- 28) "Steam Generating Heavy Water Reactor -SGHWR The final chapter," NDA, Magnox Ltd, Cavendish Flour Partnership, 2015.
- 29) K. D. Miller, R. M. Cornel, "Decommissioning of the Secondary Containment of the Steam Generating Heavy Water Reactor at UKAEA Winfrith," WM'07 March, 2007.
- Authority and Magnox Ltd, "Work underway to remove nuclear reactor core in Dorset," November, 2016.
- 31) "Nuclear Decommissioning at Winfrith," Technical lecture, 10 October, 2019, https://nearyou.imeche.org/near-you/UK/ Wessex/Dorchester-Area/event-detail
- John Falch, James Fisher and Sons plc, 2016,

https://www.james-fisher.com/media/pelican-newsletter/spring-2018/

- 33) IAEA-TECDOC-1769, "Treatment of Residual Sodium and Sodium Potassium from Fast Reactors," IAEA VIENNA, 2015.
- The Highland Council, "Dounreay Planning Framework," (1/2006).
- 35) (一社) 日本原子力産業会議ニュース, 2016 年8月6日 https://www.jaif.or.jp/160808-a
- 36) Alastair Comline, NNC, "Dounreay Prototype Fast Reactor Liquid Metals Disposal Projects."
Radwaste and Decommissioning Center

RANDEC contributes to establishment of generic nuclear energy backend technology in Japan. The following works are currently intensively involved:

The establishment of business work of consignment, store and process of radwaste from domestic research, industrial facilities etc. for disposal.

The research and development of nuclear facility decommissioning technology and radwaste treatment as well as disposal.

The study on decontamination and environmental restoration of ground in Fukushima and Kanto area.

The dissemination and enlightenment of backend research and development results, and training.

RANDEC works for advancement of science and technology, and sustainable environmental cleanliness.

原子力関連施設の安全性評価のための解析業務に豊富な実績があります

原子力関連施設の安全性評価では、放射性物質発生量の計算から、人の被ばく線量計算にいた るまで、様々な解析手法を駆使する必要があります。V.I.C.は、関係省庁や各研究機関と協力 し、一連の解析手法に関連する技術・知見を積み上げてきています。

- 廃棄物中の放射能量の計算(燃焼計算、放射化計算)-ORIGEN2
- 放射線輸送計算、遮へい計算-QAD、MCNP、PHITS
- 埋設処分施設の安全評価(地下水流動解析、核種移行解析、線量評価)
 −3DSEEP、Dtransu、TOUGH2、GSA-GCL、GSRW
- 臨界計算-MVP、SRAC、DANTSYS、SMORES、OPT-TWO、OPT-DANT、AGNES、AGNES-P

廃炉を加速するレーザー除染技術 LDD株式会社 https://lddc.jp/about/

図1、半自動レーザー除染機

図3、原子炉1次冷却水系内ステ ンレス板の完全除染2MBq/kg を検出限界以下まで除染

図5、コンクリート板高速除染2kW レーザーを用いて 20m²/ 時間

図2 1次冷却水系ステンレス配管内面の
 汚染深さと除染係数の関係(IAEA基準)
 発電用原子炉の1次冷却水系配管の表面層

図4、レーザーブラスター

水平照射レーザーブラスター

垂直照射レーザーブラスター

〒963-8041 福島県郡山市富田町字権現林11 Tel:0120-728-121 Fax:024-954-6332 ■郡山校正センター ISO/IEC 17025:2017 ■放射性同位元素等使用許可 使第5941

⑥ デコミッショニング技報 第62号

発行日	:令和2年9月30日
編集·発行者	:公益財団法人 原子力バックエンド推進センター
	〒319-1107 茨城県那珂郡東海村豊白一丁目3-37 Tel. 029-283-3010 Fax.029-287-0022
URL	: http://www.randec.or.jp
E-mail	: decomi@randec.or.jp